X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material

Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clay minerals 2018-09, Vol.53 (3), p.471-485
Hauptverfasser: Sanz, Angel, Bastida, Joaquin, Caballero, Angel, Kojdecki, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 3
container_start_page 471
container_title Clay minerals
container_volume 53
creator Sanz, Angel
Bastida, Joaquin
Caballero, Angel
Kojdecki, Marek
description Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.
doi_str_mv 10.1180/clm.2018.34
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209588814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209588814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWD9O_gMBj7J1stnNJngq4hcIXhS9hdk00Wi6qcnW0v_eFD30NMzMj8d7j5AzBlPGJFyasJjWwOSUN3tkwpqOVRI47JMJAKhKtq08JEc5f5aVN5JPSHirEm7o3DuX0Iw-DvQVU7JDNfuxqUfzQRerEPxoKQ4YNtln6ge6_iiXNSZLlzEZG9AP-ao8XFjZwVgaHf3CGAqZcE0XONrkMZyQA4ch29P_eUxebm-er--rx6e7h-vZY4VcirFysq97YQ00SpU0tTW1U3OBDK0QSnSqRcFsO0dwAhswivUOoZPQy67myPgxOf_TXab4vbJ51J9xlYr9rOsaVCulZE2hLv4ok2LOyTq9TH6BaaMZ6G2dutSpt3VqvkO_25iN36ZcxxTmO9LAlC52QXT8F0SreFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209588814</pqid></control><display><type>article</type><title>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</title><source>Cambridge University Press Journals Complete</source><creator>Sanz, Angel ; Bastida, Joaquin ; Caballero, Angel ; Kojdecki, Marek</creator><creatorcontrib>Sanz, Angel ; Bastida, Joaquin ; Caballero, Angel ; Kojdecki, Marek</creatorcontrib><description>Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.</description><identifier>ISSN: 0009-8558</identifier><identifier>EISSN: 1471-8030</identifier><identifier>DOI: 10.1180/clm.2018.34</identifier><language>eng</language><publisher>Middlesex: Mineralogical Society</publisher><subject>Aluminum oxide ; ceramic materials ; Ceramics ; clastic sediments ; Clay ; clay minerals ; Composition ; Crystallites ; Crystals ; Firing ; Firings ; Frequency distribution ; Kaolin ; Kaolinite ; Microstructural analysis ; Mineralogy ; Mixtures ; Mullite ; nesosilicates ; orthosilicates ; Particle size ; Porcelain ; Quartz ; Raw materials ; Scanning electron microscopy ; sed rocks, sediments ; Sedimentary petrology ; sediments ; sheet silicates ; silicates ; Temperature ; Temperature effects ; Thickening ; triaxial tests ; Warren-Averback analysis ; X-ray diffraction ; X-ray diffraction data</subject><ispartof>Clay minerals, 2018-09, Vol.53 (3), p.471-485</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland</rights><rights>Copyright © Mineralogical Society of Great Britain and Ireland 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</citedby><cites>FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sanz, Angel</creatorcontrib><creatorcontrib>Bastida, Joaquin</creatorcontrib><creatorcontrib>Caballero, Angel</creatorcontrib><creatorcontrib>Kojdecki, Marek</creatorcontrib><title>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</title><title>Clay minerals</title><description>Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.</description><subject>Aluminum oxide</subject><subject>ceramic materials</subject><subject>Ceramics</subject><subject>clastic sediments</subject><subject>Clay</subject><subject>clay minerals</subject><subject>Composition</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Firing</subject><subject>Firings</subject><subject>Frequency distribution</subject><subject>Kaolin</subject><subject>Kaolinite</subject><subject>Microstructural analysis</subject><subject>Mineralogy</subject><subject>Mixtures</subject><subject>Mullite</subject><subject>nesosilicates</subject><subject>orthosilicates</subject><subject>Particle size</subject><subject>Porcelain</subject><subject>Quartz</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>sed rocks, sediments</subject><subject>Sedimentary petrology</subject><subject>sediments</subject><subject>sheet silicates</subject><subject>silicates</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thickening</subject><subject>triaxial tests</subject><subject>Warren-Averback analysis</subject><subject>X-ray diffraction</subject><subject>X-ray diffraction data</subject><issn>0009-8558</issn><issn>1471-8030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1LAzEQxYMoWD9O_gMBj7J1stnNJngq4hcIXhS9hdk00Wi6qcnW0v_eFD30NMzMj8d7j5AzBlPGJFyasJjWwOSUN3tkwpqOVRI47JMJAKhKtq08JEc5f5aVN5JPSHirEm7o3DuX0Iw-DvQVU7JDNfuxqUfzQRerEPxoKQ4YNtln6ge6_iiXNSZLlzEZG9AP-ao8XFjZwVgaHf3CGAqZcE0XONrkMZyQA4ch29P_eUxebm-er--rx6e7h-vZY4VcirFysq97YQ00SpU0tTW1U3OBDK0QSnSqRcFsO0dwAhswivUOoZPQy67myPgxOf_TXab4vbJ51J9xlYr9rOsaVCulZE2hLv4ok2LOyTq9TH6BaaMZ6G2dutSpt3VqvkO_25iN36ZcxxTmO9LAlC52QXT8F0SreFg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Sanz, Angel</creator><creator>Bastida, Joaquin</creator><creator>Caballero, Angel</creator><creator>Kojdecki, Marek</creator><general>Mineralogical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L.G</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180901</creationdate><title>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</title><author>Sanz, Angel ; Bastida, Joaquin ; Caballero, Angel ; Kojdecki, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum oxide</topic><topic>ceramic materials</topic><topic>Ceramics</topic><topic>clastic sediments</topic><topic>Clay</topic><topic>clay minerals</topic><topic>Composition</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Firing</topic><topic>Firings</topic><topic>Frequency distribution</topic><topic>Kaolin</topic><topic>Kaolinite</topic><topic>Microstructural analysis</topic><topic>Mineralogy</topic><topic>Mixtures</topic><topic>Mullite</topic><topic>nesosilicates</topic><topic>orthosilicates</topic><topic>Particle size</topic><topic>Porcelain</topic><topic>Quartz</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>sed rocks, sediments</topic><topic>Sedimentary petrology</topic><topic>sediments</topic><topic>sheet silicates</topic><topic>silicates</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thickening</topic><topic>triaxial tests</topic><topic>Warren-Averback analysis</topic><topic>X-ray diffraction</topic><topic>X-ray diffraction data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz, Angel</creatorcontrib><creatorcontrib>Bastida, Joaquin</creatorcontrib><creatorcontrib>Caballero, Angel</creatorcontrib><creatorcontrib>Kojdecki, Marek</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Clay minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz, Angel</au><au>Bastida, Joaquin</au><au>Caballero, Angel</au><au>Kojdecki, Marek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</atitle><jtitle>Clay minerals</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>471</spage><epage>485</epage><pages>471-485</pages><issn>0009-8558</issn><eissn>1471-8030</eissn><abstract>Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.</abstract><cop>Middlesex</cop><pub>Mineralogical Society</pub><doi>10.1180/clm.2018.34</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-8558
ispartof Clay minerals, 2018-09, Vol.53 (3), p.471-485
issn 0009-8558
1471-8030
language eng
recordid cdi_proquest_journals_2209588814
source Cambridge University Press Journals Complete
subjects Aluminum oxide
ceramic materials
Ceramics
clastic sediments
Clay
clay minerals
Composition
Crystallites
Crystals
Firing
Firings
Frequency distribution
Kaolin
Kaolinite
Microstructural analysis
Mineralogy
Mixtures
Mullite
nesosilicates
orthosilicates
Particle size
Porcelain
Quartz
Raw materials
Scanning electron microscopy
sed rocks, sediments
Sedimentary petrology
sediments
sheet silicates
silicates
Temperature
Temperature effects
Thickening
triaxial tests
Warren-Averback analysis
X-ray diffraction
X-ray diffraction data
title X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20diffraction%20Warren-Averbach%20mullite%20analysis%20in%20whiteware%20porcelains;%20influence%20of%20kaolin%20raw%20material&rft.jtitle=Clay%20minerals&rft.au=Sanz,%20Angel&rft.date=2018-09-01&rft.volume=53&rft.issue=3&rft.spage=471&rft.epage=485&rft.pages=471-485&rft.issn=0009-8558&rft.eissn=1471-8030&rft_id=info:doi/10.1180/clm.2018.34&rft_dat=%3Cproquest_cross%3E2209588814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209588814&rft_id=info:pmid/&rfr_iscdi=true