X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material
Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No sig...
Gespeichert in:
Veröffentlicht in: | Clay minerals 2018-09, Vol.53 (3), p.471-485 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 3 |
container_start_page | 471 |
container_title | Clay minerals |
container_volume | 53 |
creator | Sanz, Angel Bastida, Joaquin Caballero, Angel Kojdecki, Marek |
description | Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth. |
doi_str_mv | 10.1180/clm.2018.34 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209588814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209588814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWD9O_gMBj7J1stnNJngq4hcIXhS9hdk00Wi6qcnW0v_eFD30NMzMj8d7j5AzBlPGJFyasJjWwOSUN3tkwpqOVRI47JMJAKhKtq08JEc5f5aVN5JPSHirEm7o3DuX0Iw-DvQVU7JDNfuxqUfzQRerEPxoKQ4YNtln6ge6_iiXNSZLlzEZG9AP-ao8XFjZwVgaHf3CGAqZcE0XONrkMZyQA4ch29P_eUxebm-er--rx6e7h-vZY4VcirFysq97YQ00SpU0tTW1U3OBDK0QSnSqRcFsO0dwAhswivUOoZPQy67myPgxOf_TXab4vbJ51J9xlYr9rOsaVCulZE2hLv4ok2LOyTq9TH6BaaMZ6G2dutSpt3VqvkO_25iN36ZcxxTmO9LAlC52QXT8F0SreFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209588814</pqid></control><display><type>article</type><title>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</title><source>Cambridge University Press Journals Complete</source><creator>Sanz, Angel ; Bastida, Joaquin ; Caballero, Angel ; Kojdecki, Marek</creator><creatorcontrib>Sanz, Angel ; Bastida, Joaquin ; Caballero, Angel ; Kojdecki, Marek</creatorcontrib><description>Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.</description><identifier>ISSN: 0009-8558</identifier><identifier>EISSN: 1471-8030</identifier><identifier>DOI: 10.1180/clm.2018.34</identifier><language>eng</language><publisher>Middlesex: Mineralogical Society</publisher><subject>Aluminum oxide ; ceramic materials ; Ceramics ; clastic sediments ; Clay ; clay minerals ; Composition ; Crystallites ; Crystals ; Firing ; Firings ; Frequency distribution ; Kaolin ; Kaolinite ; Microstructural analysis ; Mineralogy ; Mixtures ; Mullite ; nesosilicates ; orthosilicates ; Particle size ; Porcelain ; Quartz ; Raw materials ; Scanning electron microscopy ; sed rocks, sediments ; Sedimentary petrology ; sediments ; sheet silicates ; silicates ; Temperature ; Temperature effects ; Thickening ; triaxial tests ; Warren-Averback analysis ; X-ray diffraction ; X-ray diffraction data</subject><ispartof>Clay minerals, 2018-09, Vol.53 (3), p.471-485</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland</rights><rights>Copyright © Mineralogical Society of Great Britain and Ireland 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</citedby><cites>FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sanz, Angel</creatorcontrib><creatorcontrib>Bastida, Joaquin</creatorcontrib><creatorcontrib>Caballero, Angel</creatorcontrib><creatorcontrib>Kojdecki, Marek</creatorcontrib><title>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</title><title>Clay minerals</title><description>Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.</description><subject>Aluminum oxide</subject><subject>ceramic materials</subject><subject>Ceramics</subject><subject>clastic sediments</subject><subject>Clay</subject><subject>clay minerals</subject><subject>Composition</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Firing</subject><subject>Firings</subject><subject>Frequency distribution</subject><subject>Kaolin</subject><subject>Kaolinite</subject><subject>Microstructural analysis</subject><subject>Mineralogy</subject><subject>Mixtures</subject><subject>Mullite</subject><subject>nesosilicates</subject><subject>orthosilicates</subject><subject>Particle size</subject><subject>Porcelain</subject><subject>Quartz</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>sed rocks, sediments</subject><subject>Sedimentary petrology</subject><subject>sediments</subject><subject>sheet silicates</subject><subject>silicates</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thickening</subject><subject>triaxial tests</subject><subject>Warren-Averback analysis</subject><subject>X-ray diffraction</subject><subject>X-ray diffraction data</subject><issn>0009-8558</issn><issn>1471-8030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1LAzEQxYMoWD9O_gMBj7J1stnNJngq4hcIXhS9hdk00Wi6qcnW0v_eFD30NMzMj8d7j5AzBlPGJFyasJjWwOSUN3tkwpqOVRI47JMJAKhKtq08JEc5f5aVN5JPSHirEm7o3DuX0Iw-DvQVU7JDNfuxqUfzQRerEPxoKQ4YNtln6ge6_iiXNSZLlzEZG9AP-ao8XFjZwVgaHf3CGAqZcE0XONrkMZyQA4ch29P_eUxebm-er--rx6e7h-vZY4VcirFysq97YQ00SpU0tTW1U3OBDK0QSnSqRcFsO0dwAhswivUOoZPQy67myPgxOf_TXab4vbJ51J9xlYr9rOsaVCulZE2hLv4ok2LOyTq9TH6BaaMZ6G2dutSpt3VqvkO_25iN36ZcxxTmO9LAlC52QXT8F0SreFg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Sanz, Angel</creator><creator>Bastida, Joaquin</creator><creator>Caballero, Angel</creator><creator>Kojdecki, Marek</creator><general>Mineralogical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L.G</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20180901</creationdate><title>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</title><author>Sanz, Angel ; Bastida, Joaquin ; Caballero, Angel ; Kojdecki, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-f8b2b6ec04992012ec2f9d6a1ae6696795a61e5da0f6a40c91bfa0780b8723a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum oxide</topic><topic>ceramic materials</topic><topic>Ceramics</topic><topic>clastic sediments</topic><topic>Clay</topic><topic>clay minerals</topic><topic>Composition</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Firing</topic><topic>Firings</topic><topic>Frequency distribution</topic><topic>Kaolin</topic><topic>Kaolinite</topic><topic>Microstructural analysis</topic><topic>Mineralogy</topic><topic>Mixtures</topic><topic>Mullite</topic><topic>nesosilicates</topic><topic>orthosilicates</topic><topic>Particle size</topic><topic>Porcelain</topic><topic>Quartz</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>sed rocks, sediments</topic><topic>Sedimentary petrology</topic><topic>sediments</topic><topic>sheet silicates</topic><topic>silicates</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thickening</topic><topic>triaxial tests</topic><topic>Warren-Averback analysis</topic><topic>X-ray diffraction</topic><topic>X-ray diffraction data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz, Angel</creatorcontrib><creatorcontrib>Bastida, Joaquin</creatorcontrib><creatorcontrib>Caballero, Angel</creatorcontrib><creatorcontrib>Kojdecki, Marek</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Clay minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz, Angel</au><au>Bastida, Joaquin</au><au>Caballero, Angel</au><au>Kojdecki, Marek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material</atitle><jtitle>Clay minerals</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>471</spage><epage>485</epage><pages>471-485</pages><issn>0009-8558</issn><eissn>1471-8030</eissn><abstract>Compositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of 'higher-crystallinity' kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren-Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.</abstract><cop>Middlesex</cop><pub>Mineralogical Society</pub><doi>10.1180/clm.2018.34</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-8558 |
ispartof | Clay minerals, 2018-09, Vol.53 (3), p.471-485 |
issn | 0009-8558 1471-8030 |
language | eng |
recordid | cdi_proquest_journals_2209588814 |
source | Cambridge University Press Journals Complete |
subjects | Aluminum oxide ceramic materials Ceramics clastic sediments Clay clay minerals Composition Crystallites Crystals Firing Firings Frequency distribution Kaolin Kaolinite Microstructural analysis Mineralogy Mixtures Mullite nesosilicates orthosilicates Particle size Porcelain Quartz Raw materials Scanning electron microscopy sed rocks, sediments Sedimentary petrology sediments sheet silicates silicates Temperature Temperature effects Thickening triaxial tests Warren-Averback analysis X-ray diffraction X-ray diffraction data |
title | X-ray diffraction Warren-Averbach mullite analysis in whiteware porcelains; influence of kaolin raw material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20diffraction%20Warren-Averbach%20mullite%20analysis%20in%20whiteware%20porcelains;%20influence%20of%20kaolin%20raw%20material&rft.jtitle=Clay%20minerals&rft.au=Sanz,%20Angel&rft.date=2018-09-01&rft.volume=53&rft.issue=3&rft.spage=471&rft.epage=485&rft.pages=471-485&rft.issn=0009-8558&rft.eissn=1471-8030&rft_id=info:doi/10.1180/clm.2018.34&rft_dat=%3Cproquest_cross%3E2209588814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209588814&rft_id=info:pmid/&rfr_iscdi=true |