Multi‐objective optimization design of plate‐fin vapor generator for supercritical organic Rankine cycle

Summary Supercritical organic Rankine cycle (SORC) is an improved ORC architecture with lower exergy destruction and better heat source utilization when compared with a subcritical one. The accurate design of its vapor generator is of critical importance due to the fact that heat transfer performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2019-05, Vol.43 (6), p.2312-2326, Article er.4451
Hauptverfasser: Xu, Guoqiang, Zhu, Pengju, Quan, Yongkai, Dong, Bensi, Jin, Ruifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2326
container_issue 6
container_start_page 2312
container_title International journal of energy research
container_volume 43
creator Xu, Guoqiang
Zhu, Pengju
Quan, Yongkai
Dong, Bensi
Jin, Ruifan
description Summary Supercritical organic Rankine cycle (SORC) is an improved ORC architecture with lower exergy destruction and better heat source utilization when compared with a subcritical one. The accurate design of its vapor generator is of critical importance due to the fact that heat transfer performance significantly affects thermal efficiency, power output, and size of the overall system. This paper aims to develop a mathematical model of the SORC vapor generator using plate‐fin heat exchanger. The finite volume method is applied to deal with the properties' variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design. The objective functions are the number of entropy production units, annual cost, and volume. For a specific SORC system, an optimum vapor generator is designed using the developed model. Parametric studies are conducted to assess the effect of geometry parameters on the vapor generator performance. The off‐design performance of the vapor generator is also evaluated under different mass flow rates and different heat source inlet temperature conditions. A mathematical model of the SORC vapor generator using plate‐fin heat exchanger is developed. The finite volume method is applied to deal with the properties variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design of the vapor generator according to its entropy generation units, annual cost, and volume.
doi_str_mv 10.1002/er.4451
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209533696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209533696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-3170e70835eab03d4f384e054fabffe1c23451afc52ce1ca262e4bbd41ef75903</originalsourceid><addsrcrecordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmr_d7R6l1B-oCEWht5BNJyV1m6zZtFJPPoLP6JOYWq8ehpmQjxlmEDqnZEAJYdcQBkLk9AD1KKmqjFIxO0Q9wgueVaScHaOTrlsSkv5o2UPN47qJ9vvzy9dL0NFuAPs22pX9UNF6h-fQ2YXD3uC2URESNNbhjWp9wAtwEFRMlUnRrVsIOthotWqwDwvlrMZT5V6tA6y3uoFTdGRU08HZX-6jl9vx8-g-mzzdPYxuJpnmjNGM05JASYY8B1UTPheGDwWQXBhVGwNUM54WVEbnTKeXYgUDUddzQcGUeUV4H13s-7bBv62hi3Lp18GlkZIxUuWcF1WR1OVe6eC7LoCRbbArFbaSErk7pYQgd6dM8mov320D2_-YHE9_9Q9Z_ngK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209533696</pqid></control><display><type>article</type><title>Multi‐objective optimization design of plate‐fin vapor generator for supercritical organic Rankine cycle</title><source>Wiley-Blackwell Journals</source><creator>Xu, Guoqiang ; Zhu, Pengju ; Quan, Yongkai ; Dong, Bensi ; Jin, Ruifan</creator><creatorcontrib>Xu, Guoqiang ; Zhu, Pengju ; Quan, Yongkai ; Dong, Bensi ; Jin, Ruifan</creatorcontrib><description>Summary Supercritical organic Rankine cycle (SORC) is an improved ORC architecture with lower exergy destruction and better heat source utilization when compared with a subcritical one. The accurate design of its vapor generator is of critical importance due to the fact that heat transfer performance significantly affects thermal efficiency, power output, and size of the overall system. This paper aims to develop a mathematical model of the SORC vapor generator using plate‐fin heat exchanger. The finite volume method is applied to deal with the properties' variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design. The objective functions are the number of entropy production units, annual cost, and volume. For a specific SORC system, an optimum vapor generator is designed using the developed model. Parametric studies are conducted to assess the effect of geometry parameters on the vapor generator performance. The off‐design performance of the vapor generator is also evaluated under different mass flow rates and different heat source inlet temperature conditions. A mathematical model of the SORC vapor generator using plate‐fin heat exchanger is developed. The finite volume method is applied to deal with the properties variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design of the vapor generator according to its entropy generation units, annual cost, and volume.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.4451</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Classification ; Computational fluid dynamics ; Design ; Design optimization ; Entropy ; Exergy ; Finite volume method ; Flow rates ; Flow velocity ; Fluids ; genetic algorithm ; Genetic algorithms ; Heat exchangers ; Heat recovery ; Heat transfer ; Inlet temperature ; Mass flow ; Mathematical models ; Mathematics ; multi‐objective optimization ; plate‐fin heat exchanger ; Power efficiency ; Rankine cycle ; Sorting algorithms ; Supercritical fluids ; supercritical organic Rankine cycle ; Thermodynamic efficiency ; vapor generator ; Vaporizers ; Vapors</subject><ispartof>International journal of energy research, 2019-05, Vol.43 (6), p.2312-2326, Article er.4451</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-3170e70835eab03d4f384e054fabffe1c23451afc52ce1ca262e4bbd41ef75903</citedby><cites>FETCH-LOGICAL-c3221-3170e70835eab03d4f384e054fabffe1c23451afc52ce1ca262e4bbd41ef75903</cites><orcidid>0000-0002-9340-2804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.4451$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.4451$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Xu, Guoqiang</creatorcontrib><creatorcontrib>Zhu, Pengju</creatorcontrib><creatorcontrib>Quan, Yongkai</creatorcontrib><creatorcontrib>Dong, Bensi</creatorcontrib><creatorcontrib>Jin, Ruifan</creatorcontrib><title>Multi‐objective optimization design of plate‐fin vapor generator for supercritical organic Rankine cycle</title><title>International journal of energy research</title><description>Summary Supercritical organic Rankine cycle (SORC) is an improved ORC architecture with lower exergy destruction and better heat source utilization when compared with a subcritical one. The accurate design of its vapor generator is of critical importance due to the fact that heat transfer performance significantly affects thermal efficiency, power output, and size of the overall system. This paper aims to develop a mathematical model of the SORC vapor generator using plate‐fin heat exchanger. The finite volume method is applied to deal with the properties' variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design. The objective functions are the number of entropy production units, annual cost, and volume. For a specific SORC system, an optimum vapor generator is designed using the developed model. Parametric studies are conducted to assess the effect of geometry parameters on the vapor generator performance. The off‐design performance of the vapor generator is also evaluated under different mass flow rates and different heat source inlet temperature conditions. A mathematical model of the SORC vapor generator using plate‐fin heat exchanger is developed. The finite volume method is applied to deal with the properties variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design of the vapor generator according to its entropy generation units, annual cost, and volume.</description><subject>Classification</subject><subject>Computational fluid dynamics</subject><subject>Design</subject><subject>Design optimization</subject><subject>Entropy</subject><subject>Exergy</subject><subject>Finite volume method</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluids</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Heat exchangers</subject><subject>Heat recovery</subject><subject>Heat transfer</subject><subject>Inlet temperature</subject><subject>Mass flow</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>multi‐objective optimization</subject><subject>plate‐fin heat exchanger</subject><subject>Power efficiency</subject><subject>Rankine cycle</subject><subject>Sorting algorithms</subject><subject>Supercritical fluids</subject><subject>supercritical organic Rankine cycle</subject><subject>Thermodynamic efficiency</subject><subject>vapor generator</subject><subject>Vaporizers</subject><subject>Vapors</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmr_d7R6l1B-oCEWht5BNJyV1m6zZtFJPPoLP6JOYWq8ehpmQjxlmEDqnZEAJYdcQBkLk9AD1KKmqjFIxO0Q9wgueVaScHaOTrlsSkv5o2UPN47qJ9vvzy9dL0NFuAPs22pX9UNF6h-fQ2YXD3uC2URESNNbhjWp9wAtwEFRMlUnRrVsIOthotWqwDwvlrMZT5V6tA6y3uoFTdGRU08HZX-6jl9vx8-g-mzzdPYxuJpnmjNGM05JASYY8B1UTPheGDwWQXBhVGwNUM54WVEbnTKeXYgUDUddzQcGUeUV4H13s-7bBv62hi3Lp18GlkZIxUuWcF1WR1OVe6eC7LoCRbbArFbaSErk7pYQgd6dM8mov320D2_-YHE9_9Q9Z_ngK</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Xu, Guoqiang</creator><creator>Zhu, Pengju</creator><creator>Quan, Yongkai</creator><creator>Dong, Bensi</creator><creator>Jin, Ruifan</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9340-2804</orcidid></search><sort><creationdate>201905</creationdate><title>Multi‐objective optimization design of plate‐fin vapor generator for supercritical organic Rankine cycle</title><author>Xu, Guoqiang ; Zhu, Pengju ; Quan, Yongkai ; Dong, Bensi ; Jin, Ruifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-3170e70835eab03d4f384e054fabffe1c23451afc52ce1ca262e4bbd41ef75903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Computational fluid dynamics</topic><topic>Design</topic><topic>Design optimization</topic><topic>Entropy</topic><topic>Exergy</topic><topic>Finite volume method</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluids</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Heat exchangers</topic><topic>Heat recovery</topic><topic>Heat transfer</topic><topic>Inlet temperature</topic><topic>Mass flow</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>multi‐objective optimization</topic><topic>plate‐fin heat exchanger</topic><topic>Power efficiency</topic><topic>Rankine cycle</topic><topic>Sorting algorithms</topic><topic>Supercritical fluids</topic><topic>supercritical organic Rankine cycle</topic><topic>Thermodynamic efficiency</topic><topic>vapor generator</topic><topic>Vaporizers</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guoqiang</creatorcontrib><creatorcontrib>Zhu, Pengju</creatorcontrib><creatorcontrib>Quan, Yongkai</creatorcontrib><creatorcontrib>Dong, Bensi</creatorcontrib><creatorcontrib>Jin, Ruifan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guoqiang</au><au>Zhu, Pengju</au><au>Quan, Yongkai</au><au>Dong, Bensi</au><au>Jin, Ruifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐objective optimization design of plate‐fin vapor generator for supercritical organic Rankine cycle</atitle><jtitle>International journal of energy research</jtitle><date>2019-05</date><risdate>2019</risdate><volume>43</volume><issue>6</issue><spage>2312</spage><epage>2326</epage><pages>2312-2326</pages><artnum>er.4451</artnum><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary Supercritical organic Rankine cycle (SORC) is an improved ORC architecture with lower exergy destruction and better heat source utilization when compared with a subcritical one. The accurate design of its vapor generator is of critical importance due to the fact that heat transfer performance significantly affects thermal efficiency, power output, and size of the overall system. This paper aims to develop a mathematical model of the SORC vapor generator using plate‐fin heat exchanger. The finite volume method is applied to deal with the properties' variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design. The objective functions are the number of entropy production units, annual cost, and volume. For a specific SORC system, an optimum vapor generator is designed using the developed model. Parametric studies are conducted to assess the effect of geometry parameters on the vapor generator performance. The off‐design performance of the vapor generator is also evaluated under different mass flow rates and different heat source inlet temperature conditions. A mathematical model of the SORC vapor generator using plate‐fin heat exchanger is developed. The finite volume method is applied to deal with the properties variation problem of the supercritical fluids. Multi‐objective optimization is employed by the nondominated sorting genetic algorithm II to find the optimum geometry design of the vapor generator according to its entropy generation units, annual cost, and volume.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.4451</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9340-2804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2019-05, Vol.43 (6), p.2312-2326, Article er.4451
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2209533696
source Wiley-Blackwell Journals
subjects Classification
Computational fluid dynamics
Design
Design optimization
Entropy
Exergy
Finite volume method
Flow rates
Flow velocity
Fluids
genetic algorithm
Genetic algorithms
Heat exchangers
Heat recovery
Heat transfer
Inlet temperature
Mass flow
Mathematical models
Mathematics
multi‐objective optimization
plate‐fin heat exchanger
Power efficiency
Rankine cycle
Sorting algorithms
Supercritical fluids
supercritical organic Rankine cycle
Thermodynamic efficiency
vapor generator
Vaporizers
Vapors
title Multi‐objective optimization design of plate‐fin vapor generator for supercritical organic Rankine cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90objective%20optimization%20design%20of%20plate%E2%80%90fin%20vapor%20generator%20for%20supercritical%20organic%20Rankine%20cycle&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Xu,%20Guoqiang&rft.date=2019-05&rft.volume=43&rft.issue=6&rft.spage=2312&rft.epage=2326&rft.pages=2312-2326&rft.artnum=er.4451&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.4451&rft_dat=%3Cproquest_cross%3E2209533696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209533696&rft_id=info:pmid/&rfr_iscdi=true