Analytic Hierarchy Process by Least Square Method Revisit
We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theor...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 2019 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2019 |
creator | Lin, Scott Shu-Cheng |
description | We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process. |
doi_str_mv | 10.1155/2019/2797515 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209521513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209521513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrdS9K0zXGM6YSJ4g_wFtLkhWXMdUs6pf-9HR149PTe4cOX976EXFK4o1SIEQMqR6yQhaDiiAyoyHkqaFYcdzuwLKWMf56SsxiXAIwKWg6IHK_1qm28SWYegw5m0SYvoTYYY1K1yRx1bJK37U4HTJ6wWdQ2ecVvH31zTk6cXkW8OMwh-bifvk9m6fz54XEynqeG59CkospLzAs02lhwvAKeWyZlwUymOQCg5ZnMrBOoHThWlmhtJo3l0lQlF44PyXWfuwn1doexUct6F7qro2IMpNg_wjt12ysT6hgDOrUJ_kuHVlFQ-3LUvhx1KKfjNz1f-LXVP_4_fdVr7Aw6_aepzCRQ_gtKmGzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209521513</pqid></control><display><type>article</type><title>Analytic Hierarchy Process by Least Square Method Revisit</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lin, Scott Shu-Cheng</creator><contributor>Garg, Akhil</contributor><creatorcontrib>Lin, Scott Shu-Cheng ; Garg, Akhil</creatorcontrib><description>We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/2797515</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analytic hierarchy process ; Applied mathematics ; Eigenvalues ; Eigenvectors ; Geographic information systems ; Hierarchies ; Least squares ; Quantitative psychology ; Soil erosion</subject><ispartof>Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-5</ispartof><rights>Copyright © 2019 Scott Shu-Cheng Lin.</rights><rights>Copyright © 2019 Scott Shu-Cheng Lin. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</citedby><cites>FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</cites><orcidid>0000-0002-0361-2024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Garg, Akhil</contributor><creatorcontrib>Lin, Scott Shu-Cheng</creatorcontrib><title>Analytic Hierarchy Process by Least Square Method Revisit</title><title>Mathematical problems in engineering</title><description>We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process.</description><subject>Analytic hierarchy process</subject><subject>Applied mathematics</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Geographic information systems</subject><subject>Hierarchies</subject><subject>Least squares</subject><subject>Quantitative psychology</subject><subject>Soil erosion</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrdS9K0zXGM6YSJ4g_wFtLkhWXMdUs6pf-9HR149PTe4cOX976EXFK4o1SIEQMqR6yQhaDiiAyoyHkqaFYcdzuwLKWMf56SsxiXAIwKWg6IHK_1qm28SWYegw5m0SYvoTYYY1K1yRx1bJK37U4HTJ6wWdQ2ecVvH31zTk6cXkW8OMwh-bifvk9m6fz54XEynqeG59CkospLzAs02lhwvAKeWyZlwUymOQCg5ZnMrBOoHThWlmhtJo3l0lQlF44PyXWfuwn1doexUct6F7qro2IMpNg_wjt12ysT6hgDOrUJ_kuHVlFQ-3LUvhx1KKfjNz1f-LXVP_4_fdVr7Aw6_aepzCRQ_gtKmGzo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lin, Scott Shu-Cheng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0361-2024</orcidid></search><sort><creationdate>20190101</creationdate><title>Analytic Hierarchy Process by Least Square Method Revisit</title><author>Lin, Scott Shu-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytic hierarchy process</topic><topic>Applied mathematics</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Geographic information systems</topic><topic>Hierarchies</topic><topic>Least squares</topic><topic>Quantitative psychology</topic><topic>Soil erosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Scott Shu-Cheng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Scott Shu-Cheng</au><au>Garg, Akhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic Hierarchy Process by Least Square Method Revisit</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/2797515</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0361-2024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-5 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2209521513 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Analytic hierarchy process Applied mathematics Eigenvalues Eigenvectors Geographic information systems Hierarchies Least squares Quantitative psychology Soil erosion |
title | Analytic Hierarchy Process by Least Square Method Revisit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20Hierarchy%20Process%20by%20Least%20Square%20Method%20Revisit&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lin,%20Scott%20Shu-Cheng&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/2797515&rft_dat=%3Cproquest_cross%3E2209521513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209521513&rft_id=info:pmid/&rfr_iscdi=true |