Analytic Hierarchy Process by Least Square Method Revisit

We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-5
1. Verfasser: Lin, Scott Shu-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 2019
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2019
creator Lin, Scott Shu-Cheng
description We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process.
doi_str_mv 10.1155/2019/2797515
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209521513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209521513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrdS9K0zXGM6YSJ4g_wFtLkhWXMdUs6pf-9HR149PTe4cOX976EXFK4o1SIEQMqR6yQhaDiiAyoyHkqaFYcdzuwLKWMf56SsxiXAIwKWg6IHK_1qm28SWYegw5m0SYvoTYYY1K1yRx1bJK37U4HTJ6wWdQ2ecVvH31zTk6cXkW8OMwh-bifvk9m6fz54XEynqeG59CkospLzAs02lhwvAKeWyZlwUymOQCg5ZnMrBOoHThWlmhtJo3l0lQlF44PyXWfuwn1doexUct6F7qro2IMpNg_wjt12ysT6hgDOrUJ_kuHVlFQ-3LUvhx1KKfjNz1f-LXVP_4_fdVr7Aw6_aepzCRQ_gtKmGzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209521513</pqid></control><display><type>article</type><title>Analytic Hierarchy Process by Least Square Method Revisit</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lin, Scott Shu-Cheng</creator><contributor>Garg, Akhil</contributor><creatorcontrib>Lin, Scott Shu-Cheng ; Garg, Akhil</creatorcontrib><description>We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/2797515</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analytic hierarchy process ; Applied mathematics ; Eigenvalues ; Eigenvectors ; Geographic information systems ; Hierarchies ; Least squares ; Quantitative psychology ; Soil erosion</subject><ispartof>Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-5</ispartof><rights>Copyright © 2019 Scott Shu-Cheng Lin.</rights><rights>Copyright © 2019 Scott Shu-Cheng Lin. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</citedby><cites>FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</cites><orcidid>0000-0002-0361-2024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Garg, Akhil</contributor><creatorcontrib>Lin, Scott Shu-Cheng</creatorcontrib><title>Analytic Hierarchy Process by Least Square Method Revisit</title><title>Mathematical problems in engineering</title><description>We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process.</description><subject>Analytic hierarchy process</subject><subject>Applied mathematics</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Geographic information systems</subject><subject>Hierarchies</subject><subject>Least squares</subject><subject>Quantitative psychology</subject><subject>Soil erosion</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMUPGrdS9K0zXGM6YSJ4g_wFtLkhWXMdUs6pf-9HR149PTe4cOX976EXFK4o1SIEQMqR6yQhaDiiAyoyHkqaFYcdzuwLKWMf56SsxiXAIwKWg6IHK_1qm28SWYegw5m0SYvoTYYY1K1yRx1bJK37U4HTJ6wWdQ2ecVvH31zTk6cXkW8OMwh-bifvk9m6fz54XEynqeG59CkospLzAs02lhwvAKeWyZlwUymOQCg5ZnMrBOoHThWlmhtJo3l0lQlF44PyXWfuwn1doexUct6F7qro2IMpNg_wjt12ysT6hgDOrUJ_kuHVlFQ-3LUvhx1KKfjNz1f-LXVP_4_fdVr7Aw6_aepzCRQ_gtKmGzo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lin, Scott Shu-Cheng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0361-2024</orcidid></search><sort><creationdate>20190101</creationdate><title>Analytic Hierarchy Process by Least Square Method Revisit</title><author>Lin, Scott Shu-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-5b68e67ecacd0f3b036d29972c4a3000ed3494df5eaf0f288edd49cd39cb835f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytic hierarchy process</topic><topic>Applied mathematics</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Geographic information systems</topic><topic>Hierarchies</topic><topic>Least squares</topic><topic>Quantitative psychology</topic><topic>Soil erosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Scott Shu-Cheng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Scott Shu-Cheng</au><au>Garg, Akhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic Hierarchy Process by Least Square Method Revisit</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We study the paper of Saaty and Vargas to discuss the solutions for a comparison matrix derived by eigenvector method, least square method, and logarithmic least square method, respectively. We prove that the prediction of Saaty and Vargas is valid. Our result will provide a patch work for the theoretic foundation for Analytic Hierarchy Process.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/2797515</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0361-2024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-5
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2209521513
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Analytic hierarchy process
Applied mathematics
Eigenvalues
Eigenvectors
Geographic information systems
Hierarchies
Least squares
Quantitative psychology
Soil erosion
title Analytic Hierarchy Process by Least Square Method Revisit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20Hierarchy%20Process%20by%20Least%20Square%20Method%20Revisit&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lin,%20Scott%20Shu-Cheng&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/2797515&rft_dat=%3Cproquest_cross%3E2209521513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209521513&rft_id=info:pmid/&rfr_iscdi=true