Insulating Polymer‐Hydrogel Nanocomposite Thin Film ‐ Based Catalytic Electrode for Efficient Oxygen Evolution Reaction

The counter‐intuitive choice of an insulating polymer for embedding electrocatalysts is shown to facilitate a simple and general strategy to fabricate catalytic electrodes for efficient oxygen evolution reaction (OER) during water splitting. The hydrogel characteristics and appreciable swelling of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2019-04, Vol.6 (7), p.1984-1989
Hauptverfasser: Divya Madhuri, U., Radhakrishnan, T. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1989
container_issue 7
container_start_page 1984
container_title ChemElectroChem
container_volume 6
creator Divya Madhuri, U.
Radhakrishnan, T. P.
description The counter‐intuitive choice of an insulating polymer for embedding electrocatalysts is shown to facilitate a simple and general strategy to fabricate catalytic electrodes for efficient oxygen evolution reaction (OER) during water splitting. The hydrogel characteristics and appreciable swelling of the polymer in aqueous medium are the key enabling factors; electrolyte absorbed in the polymer matrix is likely to be involved in the electrocatalytic process. Nanocomposite thin films of chitosan spin‐cast on common conducting substrates, with an optimal content of NiO and [Ni,Fe]O nanoplates generated through a facile and simple in situ protocol, are shown to effect OER with excellent overpotentials (down to 240 mV at 10 mA/cm2), low Tafel slope, high Faradaic efficiency, appreciable turn‐over frequency, and extended stability with high current density. Preliminary investigations with a range of catalyst‐polymer combinations illustrate the general applicability of the approach. The fabrication of robust electrodes using insulating polymer‐hydrogel nanocomposite thin films, spin‐coated on conducting substrates with in situ generated semiconductor nanoplates, is reported. Efficient oxygen evolution is demonstrated using these electrodes.
doi_str_mv 10.1002/celc.201801659
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209492926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209492926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-56b3fb849e45f0fd9546f3a338fcecb88e9cadc1e8325410c09133a7ed35e2813</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEEhV0ZbbEnOKfJMQjRCmtVFGEyhy5znVx5cTFdoGIhUfgGXkSUhUBG9M9w_edK50oOiN4RDCmFxKMHFFMckyylB9EA0p4FmNKssM_-Tgaer_GGBOCU5Zng-ht2vqtEUG3K3RnTdeA-3z_mHS1sysw6Fa0VtpmY70OgBaPukVjbRrUM-haeKhRIYIwXdASlQZkcLYGpKxDpVJaamgDmr92K2hR-WzNNmjbonsQchdOoyMljIfh9z2JHsblopjEs_nNtLiaxZKlCY_TbMnUMk84JKnCquZpkikmGMuVBLnMc-BS1JJAzmiaECwxJ4yJS6hZCjQn7CQ63_dunH3agg_V2m5d27-sKMU84ZTTrKdGe0o6670DVW2cboTrKoKr3cbVbuPqZ-Ne4HvhRRvo_qGropwVv-4XMI2DdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209492926</pqid></control><display><type>article</type><title>Insulating Polymer‐Hydrogel Nanocomposite Thin Film ‐ Based Catalytic Electrode for Efficient Oxygen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Divya Madhuri, U. ; Radhakrishnan, T. P.</creator><creatorcontrib>Divya Madhuri, U. ; Radhakrishnan, T. P.</creatorcontrib><description>The counter‐intuitive choice of an insulating polymer for embedding electrocatalysts is shown to facilitate a simple and general strategy to fabricate catalytic electrodes for efficient oxygen evolution reaction (OER) during water splitting. The hydrogel characteristics and appreciable swelling of the polymer in aqueous medium are the key enabling factors; electrolyte absorbed in the polymer matrix is likely to be involved in the electrocatalytic process. Nanocomposite thin films of chitosan spin‐cast on common conducting substrates, with an optimal content of NiO and [Ni,Fe]O nanoplates generated through a facile and simple in situ protocol, are shown to effect OER with excellent overpotentials (down to 240 mV at 10 mA/cm2), low Tafel slope, high Faradaic efficiency, appreciable turn‐over frequency, and extended stability with high current density. Preliminary investigations with a range of catalyst‐polymer combinations illustrate the general applicability of the approach. The fabrication of robust electrodes using insulating polymer‐hydrogel nanocomposite thin films, spin‐coated on conducting substrates with in situ generated semiconductor nanoplates, is reported. Efficient oxygen evolution is demonstrated using these electrodes.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201801659</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Aqueous solutions ; Catalysis ; catalytic electrode ; Chitosan ; Electrocatalysts ; Electrodes ; Frequency stability ; hydrogel polymer ; Hydrogels ; Nanocomposites ; Nickel ; Oxygen evolution reactions ; Polymers ; Slope stability ; Substrates ; Thin films ; Water splitting</subject><ispartof>ChemElectroChem, 2019-04, Vol.6 (7), p.1984-1989</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-56b3fb849e45f0fd9546f3a338fcecb88e9cadc1e8325410c09133a7ed35e2813</citedby><cites>FETCH-LOGICAL-c3549-56b3fb849e45f0fd9546f3a338fcecb88e9cadc1e8325410c09133a7ed35e2813</cites><orcidid>0000-0002-0318-4461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201801659$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201801659$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Divya Madhuri, U.</creatorcontrib><creatorcontrib>Radhakrishnan, T. P.</creatorcontrib><title>Insulating Polymer‐Hydrogel Nanocomposite Thin Film ‐ Based Catalytic Electrode for Efficient Oxygen Evolution Reaction</title><title>ChemElectroChem</title><description>The counter‐intuitive choice of an insulating polymer for embedding electrocatalysts is shown to facilitate a simple and general strategy to fabricate catalytic electrodes for efficient oxygen evolution reaction (OER) during water splitting. The hydrogel characteristics and appreciable swelling of the polymer in aqueous medium are the key enabling factors; electrolyte absorbed in the polymer matrix is likely to be involved in the electrocatalytic process. Nanocomposite thin films of chitosan spin‐cast on common conducting substrates, with an optimal content of NiO and [Ni,Fe]O nanoplates generated through a facile and simple in situ protocol, are shown to effect OER with excellent overpotentials (down to 240 mV at 10 mA/cm2), low Tafel slope, high Faradaic efficiency, appreciable turn‐over frequency, and extended stability with high current density. Preliminary investigations with a range of catalyst‐polymer combinations illustrate the general applicability of the approach. The fabrication of robust electrodes using insulating polymer‐hydrogel nanocomposite thin films, spin‐coated on conducting substrates with in situ generated semiconductor nanoplates, is reported. Efficient oxygen evolution is demonstrated using these electrodes.</description><subject>Aqueous solutions</subject><subject>Catalysis</subject><subject>catalytic electrode</subject><subject>Chitosan</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Frequency stability</subject><subject>hydrogel polymer</subject><subject>Hydrogels</subject><subject>Nanocomposites</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Polymers</subject><subject>Slope stability</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Water splitting</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEEhV0ZbbEnOKfJMQjRCmtVFGEyhy5znVx5cTFdoGIhUfgGXkSUhUBG9M9w_edK50oOiN4RDCmFxKMHFFMckyylB9EA0p4FmNKssM_-Tgaer_GGBOCU5Zng-ht2vqtEUG3K3RnTdeA-3z_mHS1sysw6Fa0VtpmY70OgBaPukVjbRrUM-haeKhRIYIwXdASlQZkcLYGpKxDpVJaamgDmr92K2hR-WzNNmjbonsQchdOoyMljIfh9z2JHsblopjEs_nNtLiaxZKlCY_TbMnUMk84JKnCquZpkikmGMuVBLnMc-BS1JJAzmiaECwxJ4yJS6hZCjQn7CQ63_dunH3agg_V2m5d27-sKMU84ZTTrKdGe0o6670DVW2cboTrKoKr3cbVbuPqZ-Ne4HvhRRvo_qGropwVv-4XMI2DdA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Divya Madhuri, U.</creator><creator>Radhakrishnan, T. P.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0318-4461</orcidid></search><sort><creationdate>20190401</creationdate><title>Insulating Polymer‐Hydrogel Nanocomposite Thin Film ‐ Based Catalytic Electrode for Efficient Oxygen Evolution Reaction</title><author>Divya Madhuri, U. ; Radhakrishnan, T. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-56b3fb849e45f0fd9546f3a338fcecb88e9cadc1e8325410c09133a7ed35e2813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Catalysis</topic><topic>catalytic electrode</topic><topic>Chitosan</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Frequency stability</topic><topic>hydrogel polymer</topic><topic>Hydrogels</topic><topic>Nanocomposites</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Polymers</topic><topic>Slope stability</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Divya Madhuri, U.</creatorcontrib><creatorcontrib>Radhakrishnan, T. P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Divya Madhuri, U.</au><au>Radhakrishnan, T. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulating Polymer‐Hydrogel Nanocomposite Thin Film ‐ Based Catalytic Electrode for Efficient Oxygen Evolution Reaction</atitle><jtitle>ChemElectroChem</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>6</volume><issue>7</issue><spage>1984</spage><epage>1989</epage><pages>1984-1989</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>The counter‐intuitive choice of an insulating polymer for embedding electrocatalysts is shown to facilitate a simple and general strategy to fabricate catalytic electrodes for efficient oxygen evolution reaction (OER) during water splitting. The hydrogel characteristics and appreciable swelling of the polymer in aqueous medium are the key enabling factors; electrolyte absorbed in the polymer matrix is likely to be involved in the electrocatalytic process. Nanocomposite thin films of chitosan spin‐cast on common conducting substrates, with an optimal content of NiO and [Ni,Fe]O nanoplates generated through a facile and simple in situ protocol, are shown to effect OER with excellent overpotentials (down to 240 mV at 10 mA/cm2), low Tafel slope, high Faradaic efficiency, appreciable turn‐over frequency, and extended stability with high current density. Preliminary investigations with a range of catalyst‐polymer combinations illustrate the general applicability of the approach. The fabrication of robust electrodes using insulating polymer‐hydrogel nanocomposite thin films, spin‐coated on conducting substrates with in situ generated semiconductor nanoplates, is reported. Efficient oxygen evolution is demonstrated using these electrodes.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201801659</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0318-4461</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2019-04, Vol.6 (7), p.1984-1989
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2209492926
source Wiley Online Library Journals Frontfile Complete
subjects Aqueous solutions
Catalysis
catalytic electrode
Chitosan
Electrocatalysts
Electrodes
Frequency stability
hydrogel polymer
Hydrogels
Nanocomposites
Nickel
Oxygen evolution reactions
Polymers
Slope stability
Substrates
Thin films
Water splitting
title Insulating Polymer‐Hydrogel Nanocomposite Thin Film ‐ Based Catalytic Electrode for Efficient Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulating%20Polymer%E2%80%90Hydrogel%20Nanocomposite%20Thin%20Film%20%E2%80%90%20Based%20Catalytic%20Electrode%20for%20Efficient%20Oxygen%20Evolution%20Reaction&rft.jtitle=ChemElectroChem&rft.au=Divya%E2%80%85Madhuri,%20U.&rft.date=2019-04-01&rft.volume=6&rft.issue=7&rft.spage=1984&rft.epage=1989&rft.pages=1984-1989&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201801659&rft_dat=%3Cproquest_cross%3E2209492926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209492926&rft_id=info:pmid/&rfr_iscdi=true