ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES
In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential tha...
Gespeichert in:
Veröffentlicht in: | TWMS journal of applied and engineering mathematics 2019-07, Vol.9 (2), p.357 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 357 |
container_title | TWMS journal of applied and engineering mathematics |
container_volume | 9 |
creator | Aliev, T.M Ibayev, E.A Mamedov, V.M |
description | In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10. |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2208780094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A583252563</galeid><sourcerecordid>A583252563</sourcerecordid><originalsourceid>FETCH-LOGICAL-g250t-3c4a1b14d6308ddccc599b6daf352bc218fb6eac91a3abb192b7e6fa147bd1393</originalsourceid><addsrcrecordid>eNptj99PgzAQx4nRxGXuf2jiM6Y_oMAjY93WBIehReMTaUtZWLahwP5_azRxD9493I_v5-5yN94Mo4D6CAXR7VV-7y3G8QCdxZRGkMw8WexAClZcyJIvK8ldWayB3DLwUhYZEwKsmMicxncbBwpWvvKMAfEuJHsGb1xuQbUrWc7TZc4c-62KB--uVcfRLn7j3KvWTGZbPy82PEtzf49DOPnEBAppFDSUwLhpjDFhkmjaqJaEWBuM4lZTq0yCFFFaowTryNJWuUd0g0hC5t7jz96Pof-82HGqD_1lOLuTNcYwjmIIk-CP2qujrbtz20-DMqduNHUaxgSHOKTEUU__UM4be-pMf7Zt5_pXA1_9o2HN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208780094</pqid></control><display><type>article</type><title>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aliev, T.M ; Ibayev, E.A ; Mamedov, V.M</creator><creatorcontrib>Aliev, T.M ; Ibayev, E.A ; Mamedov, V.M</creatorcontrib><description>In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10.</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Integral equations ; Laplace transforms ; Markov analysis ; Markov processes ; Mathematical analysis ; Mathematical research ; Matrix methods ; Poisson processes ; Queues ; Queuing theory</subject><ispartof>TWMS journal of applied and engineering mathematics, 2019-07, Vol.9 (2), p.357</ispartof><rights>COPYRIGHT 2019 Turkic World Mathematical Society</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Aliev, T.M</creatorcontrib><creatorcontrib>Ibayev, E.A</creatorcontrib><creatorcontrib>Mamedov, V.M</creatorcontrib><title>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</title><title>TWMS journal of applied and engineering mathematics</title><description>In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10.</description><subject>Integral equations</subject><subject>Laplace transforms</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Matrix methods</subject><subject>Poisson processes</subject><subject>Queues</subject><subject>Queuing theory</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptj99PgzAQx4nRxGXuf2jiM6Y_oMAjY93WBIehReMTaUtZWLahwP5_azRxD9493I_v5-5yN94Mo4D6CAXR7VV-7y3G8QCdxZRGkMw8WexAClZcyJIvK8ldWayB3DLwUhYZEwKsmMicxncbBwpWvvKMAfEuJHsGb1xuQbUrWc7TZc4c-62KB--uVcfRLn7j3KvWTGZbPy82PEtzf49DOPnEBAppFDSUwLhpjDFhkmjaqJaEWBuM4lZTq0yCFFFaowTryNJWuUd0g0hC5t7jz96Pof-82HGqD_1lOLuTNcYwjmIIk-CP2qujrbtz20-DMqduNHUaxgSHOKTEUU__UM4be-pMf7Zt5_pXA1_9o2HN</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Aliev, T.M</creator><creator>Ibayev, E.A</creator><creator>Mamedov, V.M</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190701</creationdate><title>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</title><author>Aliev, T.M ; Ibayev, E.A ; Mamedov, V.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g250t-3c4a1b14d6308ddccc599b6daf352bc218fb6eac91a3abb192b7e6fa147bd1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Integral equations</topic><topic>Laplace transforms</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Matrix methods</topic><topic>Poisson processes</topic><topic>Queues</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliev, T.M</creatorcontrib><creatorcontrib>Ibayev, E.A</creatorcontrib><creatorcontrib>Mamedov, V.M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliev, T.M</au><au>Ibayev, E.A</au><au>Mamedov, V.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>357</spage><pages>357-</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10.</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2146-1147 |
ispartof | TWMS journal of applied and engineering mathematics, 2019-07, Vol.9 (2), p.357 |
issn | 2146-1147 2146-1147 |
language | eng |
recordid | cdi_proquest_journals_2208780094 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Integral equations Laplace transforms Markov analysis Markov processes Mathematical analysis Mathematical research Matrix methods Poisson processes Queues Queuing theory |
title | ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20DISTRIBUTION%20OF%20THE%20PROCESS%20DESCRIBING%20A%20SERVICE%20SYSTEM%20WITH%20UNRELIABLE%20DEVICES&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Aliev,%20T.M&rft.date=2019-07-01&rft.volume=9&rft.issue=2&rft.spage=357&rft.pages=357-&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA583252563%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208780094&rft_id=info:pmid/&rft_galeid=A583252563&rfr_iscdi=true |