ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES

In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TWMS journal of applied and engineering mathematics 2019-07, Vol.9 (2), p.357
Hauptverfasser: Aliev, T.M, Ibayev, E.A, Mamedov, V.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 357
container_title TWMS journal of applied and engineering mathematics
container_volume 9
creator Aliev, T.M
Ibayev, E.A
Mamedov, V.M
description In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10.
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2208780094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A583252563</galeid><sourcerecordid>A583252563</sourcerecordid><originalsourceid>FETCH-LOGICAL-g250t-3c4a1b14d6308ddccc599b6daf352bc218fb6eac91a3abb192b7e6fa147bd1393</originalsourceid><addsrcrecordid>eNptj99PgzAQx4nRxGXuf2jiM6Y_oMAjY93WBIehReMTaUtZWLahwP5_azRxD9493I_v5-5yN94Mo4D6CAXR7VV-7y3G8QCdxZRGkMw8WexAClZcyJIvK8ldWayB3DLwUhYZEwKsmMicxncbBwpWvvKMAfEuJHsGb1xuQbUrWc7TZc4c-62KB--uVcfRLn7j3KvWTGZbPy82PEtzf49DOPnEBAppFDSUwLhpjDFhkmjaqJaEWBuM4lZTq0yCFFFaowTryNJWuUd0g0hC5t7jz96Pof-82HGqD_1lOLuTNcYwjmIIk-CP2qujrbtz20-DMqduNHUaxgSHOKTEUU__UM4be-pMf7Zt5_pXA1_9o2HN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208780094</pqid></control><display><type>article</type><title>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aliev, T.M ; Ibayev, E.A ; Mamedov, V.M</creator><creatorcontrib>Aliev, T.M ; Ibayev, E.A ; Mamedov, V.M</creatorcontrib><description>In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10.</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Integral equations ; Laplace transforms ; Markov analysis ; Markov processes ; Mathematical analysis ; Mathematical research ; Matrix methods ; Poisson processes ; Queues ; Queuing theory</subject><ispartof>TWMS journal of applied and engineering mathematics, 2019-07, Vol.9 (2), p.357</ispartof><rights>COPYRIGHT 2019 Turkic World Mathematical Society</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Aliev, T.M</creatorcontrib><creatorcontrib>Ibayev, E.A</creatorcontrib><creatorcontrib>Mamedov, V.M</creatorcontrib><title>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</title><title>TWMS journal of applied and engineering mathematics</title><description>In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10.</description><subject>Integral equations</subject><subject>Laplace transforms</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Matrix methods</subject><subject>Poisson processes</subject><subject>Queues</subject><subject>Queuing theory</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptj99PgzAQx4nRxGXuf2jiM6Y_oMAjY93WBIehReMTaUtZWLahwP5_azRxD9493I_v5-5yN94Mo4D6CAXR7VV-7y3G8QCdxZRGkMw8WexAClZcyJIvK8ldWayB3DLwUhYZEwKsmMicxncbBwpWvvKMAfEuJHsGb1xuQbUrWc7TZc4c-62KB--uVcfRLn7j3KvWTGZbPy82PEtzf49DOPnEBAppFDSUwLhpjDFhkmjaqJaEWBuM4lZTq0yCFFFaowTryNJWuUd0g0hC5t7jz96Pof-82HGqD_1lOLuTNcYwjmIIk-CP2qujrbtz20-DMqduNHUaxgSHOKTEUU__UM4be-pMf7Zt5_pXA1_9o2HN</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Aliev, T.M</creator><creator>Ibayev, E.A</creator><creator>Mamedov, V.M</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190701</creationdate><title>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</title><author>Aliev, T.M ; Ibayev, E.A ; Mamedov, V.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g250t-3c4a1b14d6308ddccc599b6daf352bc218fb6eac91a3abb192b7e6fa147bd1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Integral equations</topic><topic>Laplace transforms</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Matrix methods</topic><topic>Poisson processes</topic><topic>Queues</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliev, T.M</creatorcontrib><creatorcontrib>Ibayev, E.A</creatorcontrib><creatorcontrib>Mamedov, V.M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliev, T.M</au><au>Ibayev, E.A</au><au>Mamedov, V.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>357</spage><pages>357-</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>In the paper, the distribution is found for the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, in the terms of Laplace transformation. The considered process describes the queuing system with nonhomogeneous Poisson stream of demands and n unreliable devices. It is essential that the process {[[eta].sub.t],[[xi].sub.t]},t [greater than or equal to] 0, for [[xi].sub.t] [greater than or equal to] n is a homogeneous with respect to the second component Markov process. The results obtained in the paper are based on the theory of matrices and solution of the system of linear integral equations. Keywords: Poisson process, Laplace transformation, Generating function, Markov chain, Homogeneous with respect to the second component. AMS Subject Classification: 60A10, 60J25, 60G10.</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2146-1147
ispartof TWMS journal of applied and engineering mathematics, 2019-07, Vol.9 (2), p.357
issn 2146-1147
2146-1147
language eng
recordid cdi_proquest_journals_2208780094
source EZB-FREE-00999 freely available EZB journals
subjects Integral equations
Laplace transforms
Markov analysis
Markov processes
Mathematical analysis
Mathematical research
Matrix methods
Poisson processes
Queues
Queuing theory
title ON A DISTRIBUTION OF THE PROCESS DESCRIBING A SERVICE SYSTEM WITH UNRELIABLE DEVICES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20DISTRIBUTION%20OF%20THE%20PROCESS%20DESCRIBING%20A%20SERVICE%20SYSTEM%20WITH%20UNRELIABLE%20DEVICES&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Aliev,%20T.M&rft.date=2019-07-01&rft.volume=9&rft.issue=2&rft.spage=357&rft.pages=357-&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA583252563%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208780094&rft_id=info:pmid/&rft_galeid=A583252563&rfr_iscdi=true