Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel

The effects of microstructure on crack resistance and toughening mechanism of an ultra-low carbon steel were investigated. The microstructures were controlled via thermal-mechanical control processing (TMCP) and heat-treatments. Distribution of stress concentration, microcracks formation and propaga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2019-05, Vol.116, p.203-215
Hauptverfasser: Zhao, Y., Tong, X., Wei, X.H., Xu, S.S., Lan, S., Wang, X.-L., Zhang, Z.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue
container_start_page 203
container_title International journal of plasticity
container_volume 116
creator Zhao, Y.
Tong, X.
Wei, X.H.
Xu, S.S.
Lan, S.
Wang, X.-L.
Zhang, Z.W.
description The effects of microstructure on crack resistance and toughening mechanism of an ultra-low carbon steel were investigated. The microstructures were controlled via thermal-mechanical control processing (TMCP) and heat-treatments. Distribution of stress concentration, microcracks formation and propagation during Charpy impacting were investigated in detail. The results indicate that the lath martensitic structure provided a higher yield stress together with a better impact property, compared to the polygonal ferritic structure. The high strength can be attributed to the high density of dislocations in the lath martensitic structure introduced by quenching. The instrumented Charpy impact results indicated that the crack initiation energy in the lath martensitic structure was similar to that in the ferritic structure while the crack propagation energy was significantly greater than that in the ferritic structure, leading to the high toughness of the steel with the lath martensitic structure. Local stress concentration distributed uniformly in lath martensitic structure, leading to the homogeneous nucleation of microcrack. The high crack propagation energy in the lath martensitic structure can be attributed to the high fraction of high angle grain boundaries and fine effective grains, which deflected the cleavage crack propagation direction. [Display omitted] •60 °C decrement in DBTT was obtained through controlling microstructure.•The lath martensite provides a good combination of strength and toughness.•The high crack propagation energy of lath martensite benefits to the good toughness.•HAGB and EGS deflect the cleavage crack propagation direction.
doi_str_mv 10.1016/j.ijplas.2019.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2208706034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641918306521</els_id><sourcerecordid>2208706034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-3c3753f7159be0720ba5a974001e3225d74edc042ecaabf998e726e1d18b6ad13</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw8Bz62TNG3aiyDL-gELXvQc0nS6m9pta5Iq_nuzu549zcC88wzzEHLDIGXAirsutd3Ua59yYFUKLAUQJ2TBSlklnOXilCxAiiopBKvOyYX3HQDkZcYWxK_aFk3wdGzpzho3-uBmE2aHdByocdp8UIfe-qAHg1QPDe3H7yTgbkKnD7kwzpvtgP7AmPvgdBIj1GhXR8TWbrY0QnHYhH2D2F-Rs1b3Hq__6iV5f1y9LZ-T9evTy_JhnRgBEJLMZDLPWsnyqkaQHGqd60rGGcOM87yRAhsDgqPRum6rqkTJC2QNK-tCNyy7JLdH7uTGzxl9UN04uyGeVJxDKaGATMSUOKb2z3uHrZqc3Wn3oxiovV7VqaNetdergKmoN67dH9cwfvBl0SlvLEZHjXVRqGpG-z_gF3ATh4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208706034</pqid></control><display><type>article</type><title>Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Y. ; Tong, X. ; Wei, X.H. ; Xu, S.S. ; Lan, S. ; Wang, X.-L. ; Zhang, Z.W.</creator><creatorcontrib>Zhao, Y. ; Tong, X. ; Wei, X.H. ; Xu, S.S. ; Lan, S. ; Wang, X.-L. ; Zhang, Z.W.</creatorcontrib><description>The effects of microstructure on crack resistance and toughening mechanism of an ultra-low carbon steel were investigated. The microstructures were controlled via thermal-mechanical control processing (TMCP) and heat-treatments. Distribution of stress concentration, microcracks formation and propagation during Charpy impacting were investigated in detail. The results indicate that the lath martensitic structure provided a higher yield stress together with a better impact property, compared to the polygonal ferritic structure. The high strength can be attributed to the high density of dislocations in the lath martensitic structure introduced by quenching. The instrumented Charpy impact results indicated that the crack initiation energy in the lath martensitic structure was similar to that in the ferritic structure while the crack propagation energy was significantly greater than that in the ferritic structure, leading to the high toughness of the steel with the lath martensitic structure. Local stress concentration distributed uniformly in lath martensitic structure, leading to the homogeneous nucleation of microcrack. The high crack propagation energy in the lath martensitic structure can be attributed to the high fraction of high angle grain boundaries and fine effective grains, which deflected the cleavage crack propagation direction. [Display omitted] •60 °C decrement in DBTT was obtained through controlling microstructure.•The lath martensite provides a good combination of strength and toughness.•The high crack propagation energy of lath martensite benefits to the good toughness.•HAGB and EGS deflect the cleavage crack propagation direction.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2019.01.004</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Cleavage ; Crack initiation ; Crack propagation ; Dislocation density ; Effective grain size ; Ferritic stainless steels ; Fracture toughness ; Grain boundaries ; Heat treatment ; High strength steels ; Impact strength ; Impact toughness ; Lath martensitic structure ; Low carbon steels ; Low temperature ; Martensitic stainless steels ; Microcracks ; Microstructure ; Nucleation ; Propagation ; Stress concentration ; Stress propagation ; Ultra-low carbon high strength steel ; Yield stress</subject><ispartof>International journal of plasticity, 2019-05, Vol.116, p.203-215</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-3c3753f7159be0720ba5a974001e3225d74edc042ecaabf998e726e1d18b6ad13</citedby><cites>FETCH-LOGICAL-c400t-3c3753f7159be0720ba5a974001e3225d74edc042ecaabf998e726e1d18b6ad13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749641918306521$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Tong, X.</creatorcontrib><creatorcontrib>Wei, X.H.</creatorcontrib><creatorcontrib>Xu, S.S.</creatorcontrib><creatorcontrib>Lan, S.</creatorcontrib><creatorcontrib>Wang, X.-L.</creatorcontrib><creatorcontrib>Zhang, Z.W.</creatorcontrib><title>Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel</title><title>International journal of plasticity</title><description>The effects of microstructure on crack resistance and toughening mechanism of an ultra-low carbon steel were investigated. The microstructures were controlled via thermal-mechanical control processing (TMCP) and heat-treatments. Distribution of stress concentration, microcracks formation and propagation during Charpy impacting were investigated in detail. The results indicate that the lath martensitic structure provided a higher yield stress together with a better impact property, compared to the polygonal ferritic structure. The high strength can be attributed to the high density of dislocations in the lath martensitic structure introduced by quenching. The instrumented Charpy impact results indicated that the crack initiation energy in the lath martensitic structure was similar to that in the ferritic structure while the crack propagation energy was significantly greater than that in the ferritic structure, leading to the high toughness of the steel with the lath martensitic structure. Local stress concentration distributed uniformly in lath martensitic structure, leading to the homogeneous nucleation of microcrack. The high crack propagation energy in the lath martensitic structure can be attributed to the high fraction of high angle grain boundaries and fine effective grains, which deflected the cleavage crack propagation direction. [Display omitted] •60 °C decrement in DBTT was obtained through controlling microstructure.•The lath martensite provides a good combination of strength and toughness.•The high crack propagation energy of lath martensite benefits to the good toughness.•HAGB and EGS deflect the cleavage crack propagation direction.</description><subject>Cleavage</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Dislocation density</subject><subject>Effective grain size</subject><subject>Ferritic stainless steels</subject><subject>Fracture toughness</subject><subject>Grain boundaries</subject><subject>Heat treatment</subject><subject>High strength steels</subject><subject>Impact strength</subject><subject>Impact toughness</subject><subject>Lath martensitic structure</subject><subject>Low carbon steels</subject><subject>Low temperature</subject><subject>Martensitic stainless steels</subject><subject>Microcracks</subject><subject>Microstructure</subject><subject>Nucleation</subject><subject>Propagation</subject><subject>Stress concentration</subject><subject>Stress propagation</subject><subject>Ultra-low carbon high strength steel</subject><subject>Yield stress</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw8Bz62TNG3aiyDL-gELXvQc0nS6m9pta5Iq_nuzu549zcC88wzzEHLDIGXAirsutd3Ua59yYFUKLAUQJ2TBSlklnOXilCxAiiopBKvOyYX3HQDkZcYWxK_aFk3wdGzpzho3-uBmE2aHdByocdp8UIfe-qAHg1QPDe3H7yTgbkKnD7kwzpvtgP7AmPvgdBIj1GhXR8TWbrY0QnHYhH2D2F-Rs1b3Hq__6iV5f1y9LZ-T9evTy_JhnRgBEJLMZDLPWsnyqkaQHGqd60rGGcOM87yRAhsDgqPRum6rqkTJC2QNK-tCNyy7JLdH7uTGzxl9UN04uyGeVJxDKaGATMSUOKb2z3uHrZqc3Wn3oxiovV7VqaNetdergKmoN67dH9cwfvBl0SlvLEZHjXVRqGpG-z_gF3ATh4k</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Zhao, Y.</creator><creator>Tong, X.</creator><creator>Wei, X.H.</creator><creator>Xu, S.S.</creator><creator>Lan, S.</creator><creator>Wang, X.-L.</creator><creator>Zhang, Z.W.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201905</creationdate><title>Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel</title><author>Zhao, Y. ; Tong, X. ; Wei, X.H. ; Xu, S.S. ; Lan, S. ; Wang, X.-L. ; Zhang, Z.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-3c3753f7159be0720ba5a974001e3225d74edc042ecaabf998e726e1d18b6ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cleavage</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Dislocation density</topic><topic>Effective grain size</topic><topic>Ferritic stainless steels</topic><topic>Fracture toughness</topic><topic>Grain boundaries</topic><topic>Heat treatment</topic><topic>High strength steels</topic><topic>Impact strength</topic><topic>Impact toughness</topic><topic>Lath martensitic structure</topic><topic>Low carbon steels</topic><topic>Low temperature</topic><topic>Martensitic stainless steels</topic><topic>Microcracks</topic><topic>Microstructure</topic><topic>Nucleation</topic><topic>Propagation</topic><topic>Stress concentration</topic><topic>Stress propagation</topic><topic>Ultra-low carbon high strength steel</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Y.</creatorcontrib><creatorcontrib>Tong, X.</creatorcontrib><creatorcontrib>Wei, X.H.</creatorcontrib><creatorcontrib>Xu, S.S.</creatorcontrib><creatorcontrib>Lan, S.</creatorcontrib><creatorcontrib>Wang, X.-L.</creatorcontrib><creatorcontrib>Zhang, Z.W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Y.</au><au>Tong, X.</au><au>Wei, X.H.</au><au>Xu, S.S.</au><au>Lan, S.</au><au>Wang, X.-L.</au><au>Zhang, Z.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel</atitle><jtitle>International journal of plasticity</jtitle><date>2019-05</date><risdate>2019</risdate><volume>116</volume><spage>203</spage><epage>215</epage><pages>203-215</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>The effects of microstructure on crack resistance and toughening mechanism of an ultra-low carbon steel were investigated. The microstructures were controlled via thermal-mechanical control processing (TMCP) and heat-treatments. Distribution of stress concentration, microcracks formation and propagation during Charpy impacting were investigated in detail. The results indicate that the lath martensitic structure provided a higher yield stress together with a better impact property, compared to the polygonal ferritic structure. The high strength can be attributed to the high density of dislocations in the lath martensitic structure introduced by quenching. The instrumented Charpy impact results indicated that the crack initiation energy in the lath martensitic structure was similar to that in the ferritic structure while the crack propagation energy was significantly greater than that in the ferritic structure, leading to the high toughness of the steel with the lath martensitic structure. Local stress concentration distributed uniformly in lath martensitic structure, leading to the homogeneous nucleation of microcrack. The high crack propagation energy in the lath martensitic structure can be attributed to the high fraction of high angle grain boundaries and fine effective grains, which deflected the cleavage crack propagation direction. [Display omitted] •60 °C decrement in DBTT was obtained through controlling microstructure.•The lath martensite provides a good combination of strength and toughness.•The high crack propagation energy of lath martensite benefits to the good toughness.•HAGB and EGS deflect the cleavage crack propagation direction.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2019.01.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2019-05, Vol.116, p.203-215
issn 0749-6419
1879-2154
language eng
recordid cdi_proquest_journals_2208706034
source Elsevier ScienceDirect Journals Complete
subjects Cleavage
Crack initiation
Crack propagation
Dislocation density
Effective grain size
Ferritic stainless steels
Fracture toughness
Grain boundaries
Heat treatment
High strength steels
Impact strength
Impact toughness
Lath martensitic structure
Low carbon steels
Low temperature
Martensitic stainless steels
Microcracks
Microstructure
Nucleation
Propagation
Stress concentration
Stress propagation
Ultra-low carbon high strength steel
Yield stress
title Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20microstructure%20on%20crack%20resistance%20and%20low-temperature%20toughness%20of%20ultra-low%20carbon%20high%20strength%20steel&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Zhao,%20Y.&rft.date=2019-05&rft.volume=116&rft.spage=203&rft.epage=215&rft.pages=203-215&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2019.01.004&rft_dat=%3Cproquest_cross%3E2208706034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208706034&rft_id=info:pmid/&rft_els_id=S0749641918306521&rfr_iscdi=true