Infrared Spectra of N–H Compounds in LiCl-KCl-CsCl Molten Salts Using the Diffuse Reflectance Optical System

The in-situ Fourier transform infrared spectroscopy of molten eutectic LiCl-KCl-CsCl was conducted in order to identify the dissolved ions in the molten salt electrolytes. The transflectance spectrum of the melts could be easily obtained at temperatures higher than 350°C using the commercially avail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2018/03/05, Vol.86(2), pp.88-91
Hauptverfasser: SERIZAWA, Nobuyuki, TAKEI, Katsuhito, NISHIKIORI, Tokujiro, KATAYAMA, Yasushi, ITO, Yasuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 2
container_start_page 88
container_title Denki kagaku oyobi kōgyō butsuri kagaku
container_volume 86
creator SERIZAWA, Nobuyuki
TAKEI, Katsuhito
NISHIKIORI, Tokujiro
KATAYAMA, Yasushi
ITO, Yasuhiko
description The in-situ Fourier transform infrared spectroscopy of molten eutectic LiCl-KCl-CsCl was conducted in order to identify the dissolved ions in the molten salt electrolytes. The transflectance spectrum of the melts could be easily obtained at temperatures higher than 350°C using the commercially available diffuse reflectance optical system and an air-tight chamber with a built-in heater. The sharp absorption peak attributable to the stretching vibration of OH− was observed in the melt containing LiOH, indicating the availability of identification of dissolved species in the melts. The intensities of transflection possibly assignable to N–H bonds in imide (NH2−) and amide (NH2−) anions in the melt containing Li3N changed during supplying H2 gas because of the progress of the protonation reactions of these anions to form NH3. The in-situ analysis of the dissolved ions in the melts under the reaction conditions by infrared spectroscopy with the diffuse reflectance optical system can be a simple and powerful tool for understanding the reaction mechanism.
doi_str_mv 10.5796/electrochemistry.17-00084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2208166302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2208166302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-e407eb7eeef81bec97833859a245bc25eeeb437e23a13d1f5817e99a418907033</originalsourceid><addsrcrecordid>eNplUMtOwzAQtBBIVMA_GHEO-JHE9hGFpyhUovRsue66TZU6wXYPvfEP_CFfQkqBAxx297AzszuD0Ckl54VQ5QU0YFNo7QJWdUxhc05FRgiR-R4aMCrLjOUF3UcDyvM840XODtFJjMseQokqFVMD5O-9CybADI-7rZjBrcNPH2_vd7hqV1279rOIa4-HddVkD31VsWrwY9sk8HhsmhTxJNZ-jtMC8FXt3DoCfga3_cx4C3jUpdqaBo83McHqGB0400Q4-Z5HaHJz_VLdZcPR7X11OcxswYuUQU4ETAUAOEmnYJWQnMtCmd7Q1LKiX0xzLoBxQ_mMukJSAUqZnEpFBOH8CJ3tdLvQvq4hJr1s18H3JzVjRNKy5IT1KLVD2dDGGMDpLtQrEzaaEr1NWP9NWFOhvxLuuaMddxmTmcMv04TebwP_mbLUbNt-FH6RdmGCBs8_AVUCkkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208166302</pqid></control><display><type>article</type><title>Infrared Spectra of N–H Compounds in LiCl-KCl-CsCl Molten Salts Using the Diffuse Reflectance Optical System</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>SERIZAWA, Nobuyuki ; TAKEI, Katsuhito ; NISHIKIORI, Tokujiro ; KATAYAMA, Yasushi ; ITO, Yasuhiko</creator><creatorcontrib>SERIZAWA, Nobuyuki ; TAKEI, Katsuhito ; NISHIKIORI, Tokujiro ; KATAYAMA, Yasushi ; ITO, Yasuhiko</creatorcontrib><description>The in-situ Fourier transform infrared spectroscopy of molten eutectic LiCl-KCl-CsCl was conducted in order to identify the dissolved ions in the molten salt electrolytes. The transflectance spectrum of the melts could be easily obtained at temperatures higher than 350°C using the commercially available diffuse reflectance optical system and an air-tight chamber with a built-in heater. The sharp absorption peak attributable to the stretching vibration of OH− was observed in the melt containing LiOH, indicating the availability of identification of dissolved species in the melts. The intensities of transflection possibly assignable to N–H bonds in imide (NH2−) and amide (NH2−) anions in the melt containing Li3N changed during supplying H2 gas because of the progress of the protonation reactions of these anions to form NH3. The in-situ analysis of the dissolved ions in the melts under the reaction conditions by infrared spectroscopy with the diffuse reflectance optical system can be a simple and powerful tool for understanding the reaction mechanism.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.17-00084</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Amide and Imide Anions ; Ammonia ; Anions ; Diffuse Reflectance ; Electrochemical Ammonia Synthesis ; Fourier transforms ; Infrared spectra ; Infrared Spectroscopy ; Ions ; Lithium chloride ; Melts ; Molten salt electrolytes ; Molten salts ; Potassium chloride ; Protonation ; Reaction mechanisms ; Reflectance ; Salts ; Spectroscopy ; Spectrum analysis ; Vibration</subject><ispartof>Electrochemistry, 2018/03/05, Vol.86(2), pp.88-91</ispartof><rights>2018 The Electrochemical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-e407eb7eeef81bec97833859a245bc25eeeb437e23a13d1f5817e99a418907033</citedby><cites>FETCH-LOGICAL-c535t-e407eb7eeef81bec97833859a245bc25eeeb437e23a13d1f5817e99a418907033</cites><orcidid>0000-0002-4057-8398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>SERIZAWA, Nobuyuki</creatorcontrib><creatorcontrib>TAKEI, Katsuhito</creatorcontrib><creatorcontrib>NISHIKIORI, Tokujiro</creatorcontrib><creatorcontrib>KATAYAMA, Yasushi</creatorcontrib><creatorcontrib>ITO, Yasuhiko</creatorcontrib><title>Infrared Spectra of N–H Compounds in LiCl-KCl-CsCl Molten Salts Using the Diffuse Reflectance Optical System</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>The in-situ Fourier transform infrared spectroscopy of molten eutectic LiCl-KCl-CsCl was conducted in order to identify the dissolved ions in the molten salt electrolytes. The transflectance spectrum of the melts could be easily obtained at temperatures higher than 350°C using the commercially available diffuse reflectance optical system and an air-tight chamber with a built-in heater. The sharp absorption peak attributable to the stretching vibration of OH− was observed in the melt containing LiOH, indicating the availability of identification of dissolved species in the melts. The intensities of transflection possibly assignable to N–H bonds in imide (NH2−) and amide (NH2−) anions in the melt containing Li3N changed during supplying H2 gas because of the progress of the protonation reactions of these anions to form NH3. The in-situ analysis of the dissolved ions in the melts under the reaction conditions by infrared spectroscopy with the diffuse reflectance optical system can be a simple and powerful tool for understanding the reaction mechanism.</description><subject>Amide and Imide Anions</subject><subject>Ammonia</subject><subject>Anions</subject><subject>Diffuse Reflectance</subject><subject>Electrochemical Ammonia Synthesis</subject><subject>Fourier transforms</subject><subject>Infrared spectra</subject><subject>Infrared Spectroscopy</subject><subject>Ions</subject><subject>Lithium chloride</subject><subject>Melts</subject><subject>Molten salt electrolytes</subject><subject>Molten salts</subject><subject>Potassium chloride</subject><subject>Protonation</subject><subject>Reaction mechanisms</subject><subject>Reflectance</subject><subject>Salts</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Vibration</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplUMtOwzAQtBBIVMA_GHEO-JHE9hGFpyhUovRsue66TZU6wXYPvfEP_CFfQkqBAxx297AzszuD0Ckl54VQ5QU0YFNo7QJWdUxhc05FRgiR-R4aMCrLjOUF3UcDyvM840XODtFJjMseQokqFVMD5O-9CybADI-7rZjBrcNPH2_vd7hqV1279rOIa4-HddVkD31VsWrwY9sk8HhsmhTxJNZ-jtMC8FXt3DoCfga3_cx4C3jUpdqaBo83McHqGB0400Q4-Z5HaHJz_VLdZcPR7X11OcxswYuUQU4ETAUAOEmnYJWQnMtCmd7Q1LKiX0xzLoBxQ_mMukJSAUqZnEpFBOH8CJ3tdLvQvq4hJr1s18H3JzVjRNKy5IT1KLVD2dDGGMDpLtQrEzaaEr1NWP9NWFOhvxLuuaMddxmTmcMv04TebwP_mbLUbNt-FH6RdmGCBs8_AVUCkkA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>SERIZAWA, Nobuyuki</creator><creator>TAKEI, Katsuhito</creator><creator>NISHIKIORI, Tokujiro</creator><creator>KATAYAMA, Yasushi</creator><creator>ITO, Yasuhiko</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4057-8398</orcidid></search><sort><creationdate>20180101</creationdate><title>Infrared Spectra of N–H Compounds in LiCl-KCl-CsCl Molten Salts Using the Diffuse Reflectance Optical System</title><author>SERIZAWA, Nobuyuki ; TAKEI, Katsuhito ; NISHIKIORI, Tokujiro ; KATAYAMA, Yasushi ; ITO, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-e407eb7eeef81bec97833859a245bc25eeeb437e23a13d1f5817e99a418907033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amide and Imide Anions</topic><topic>Ammonia</topic><topic>Anions</topic><topic>Diffuse Reflectance</topic><topic>Electrochemical Ammonia Synthesis</topic><topic>Fourier transforms</topic><topic>Infrared spectra</topic><topic>Infrared Spectroscopy</topic><topic>Ions</topic><topic>Lithium chloride</topic><topic>Melts</topic><topic>Molten salt electrolytes</topic><topic>Molten salts</topic><topic>Potassium chloride</topic><topic>Protonation</topic><topic>Reaction mechanisms</topic><topic>Reflectance</topic><topic>Salts</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SERIZAWA, Nobuyuki</creatorcontrib><creatorcontrib>TAKEI, Katsuhito</creatorcontrib><creatorcontrib>NISHIKIORI, Tokujiro</creatorcontrib><creatorcontrib>KATAYAMA, Yasushi</creatorcontrib><creatorcontrib>ITO, Yasuhiko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SERIZAWA, Nobuyuki</au><au>TAKEI, Katsuhito</au><au>NISHIKIORI, Tokujiro</au><au>KATAYAMA, Yasushi</au><au>ITO, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Spectra of N–H Compounds in LiCl-KCl-CsCl Molten Salts Using the Diffuse Reflectance Optical System</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>86</volume><issue>2</issue><spage>88</spage><epage>91</epage><pages>88-91</pages><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>The in-situ Fourier transform infrared spectroscopy of molten eutectic LiCl-KCl-CsCl was conducted in order to identify the dissolved ions in the molten salt electrolytes. The transflectance spectrum of the melts could be easily obtained at temperatures higher than 350°C using the commercially available diffuse reflectance optical system and an air-tight chamber with a built-in heater. The sharp absorption peak attributable to the stretching vibration of OH− was observed in the melt containing LiOH, indicating the availability of identification of dissolved species in the melts. The intensities of transflection possibly assignable to N–H bonds in imide (NH2−) and amide (NH2−) anions in the melt containing Li3N changed during supplying H2 gas because of the progress of the protonation reactions of these anions to form NH3. The in-situ analysis of the dissolved ions in the melts under the reaction conditions by infrared spectroscopy with the diffuse reflectance optical system can be a simple and powerful tool for understanding the reaction mechanism.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.17-00084</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4057-8398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-3542
ispartof Electrochemistry, 2018/03/05, Vol.86(2), pp.88-91
issn 1344-3542
2186-2451
language eng
recordid cdi_proquest_journals_2208166302
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amide and Imide Anions
Ammonia
Anions
Diffuse Reflectance
Electrochemical Ammonia Synthesis
Fourier transforms
Infrared spectra
Infrared Spectroscopy
Ions
Lithium chloride
Melts
Molten salt electrolytes
Molten salts
Potassium chloride
Protonation
Reaction mechanisms
Reflectance
Salts
Spectroscopy
Spectrum analysis
Vibration
title Infrared Spectra of N–H Compounds in LiCl-KCl-CsCl Molten Salts Using the Diffuse Reflectance Optical System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Spectra%20of%20N%E2%80%93H%20Compounds%20in%20LiCl-KCl-CsCl%20Molten%20Salts%20Using%20the%20Diffuse%20Reflectance%20Optical%20System&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=SERIZAWA,%20Nobuyuki&rft.date=2018-01-01&rft.volume=86&rft.issue=2&rft.spage=88&rft.epage=91&rft.pages=88-91&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.17-00084&rft_dat=%3Cproquest_cross%3E2208166302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208166302&rft_id=info:pmid/&rfr_iscdi=true