Closing the gap between atomic-scale lattice deformations and continuum elasticity
Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomistic representation of crystalline structures that...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2019-04, Vol.5 (1), Article 48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj computational materials |
container_volume | 5 |
creator | Salvalaglio, Marco Voigt, Axel Elder, Ken R. |
description | Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomistic representation of crystalline structures that also include features typical of the microscopic scale. Analytic expressions for strain components are obtained from the complex amplitudes of the Fourier modes representing periodic lattice positions, which can be generally provided by atomistic modeling or experiments. The magnitude and phase of these amplitudes, together with the continuous description of strains, are able to characterize crystal rotations, lattice deformations, and dislocations. Moreover, combined with the so-called amplitude expansion of the phase-field crystal model, they provide a suitable tool for bridging microscopic to macroscopic scales. This study enables the in-depth analysis of elasticity effects for macroscale and mesoscale systems taking microscopic details into account. |
doi_str_mv | 10.1038/s41524-019-0185-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207979666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207979666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a0d9a4f94c94c5e61f555892e77cfa2100fff54c79ad281f26cb8f2ba979d8aa3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnadM2R1n8AkEQPYfZNFm7tMmapMj-e7NU0Isww8zheWfgIeSSwTWDsr2JFRO8KoDJ3K0o4IQsOIimKGUNp3_2c7KKcQeQSd7yChbkdT342LstTR-GbnFPNyZ9GeMoJj_2uogaB0MHTKnXhnbG-jBi6r2LFF1HtXepd9M0UjNgzEyfDhfkzOIQzepnLsn7_d3b-rF4fnl4Wt8-F7oUMhUIncTKykrnEqZmVgjRSm6aRlvkDMBaKyrdSOx4yyyv9aa1fIOykV2LWC7J1Xx3H_znZGJSOz8Fl18qzqHJWF3XmWIzpYOPMRir9qEfMRwUA3W0p2Z7KjtRR3sKcobPmZhZtzXh9_L_oW_alXLz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207979666</pqid></control><display><type>article</type><title>Closing the gap between atomic-scale lattice deformations and continuum elasticity</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Salvalaglio, Marco ; Voigt, Axel ; Elder, Ken R.</creator><creatorcontrib>Salvalaglio, Marco ; Voigt, Axel ; Elder, Ken R.</creatorcontrib><description>Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomistic representation of crystalline structures that also include features typical of the microscopic scale. Analytic expressions for strain components are obtained from the complex amplitudes of the Fourier modes representing periodic lattice positions, which can be generally provided by atomistic modeling or experiments. The magnitude and phase of these amplitudes, together with the continuous description of strains, are able to characterize crystal rotations, lattice deformations, and dislocations. Moreover, combined with the so-called amplitude expansion of the phase-field crystal model, they provide a suitable tool for bridging microscopic to macroscopic scales. This study enables the in-depth analysis of elasticity effects for macroscale and mesoscale systems taking microscopic details into account.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-019-0185-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1036 ; 639/301/1034/1037 ; Amplitudes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Crystal lattices ; Deformation ; Dislocations ; Elasticity ; Lattice vibration ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Strain analysis ; Theoretical</subject><ispartof>npj computational materials, 2019-04, Vol.5 (1), Article 48</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a0d9a4f94c94c5e61f555892e77cfa2100fff54c79ad281f26cb8f2ba979d8aa3</citedby><cites>FETCH-LOGICAL-c359t-a0d9a4f94c94c5e61f555892e77cfa2100fff54c79ad281f26cb8f2ba979d8aa3</cites><orcidid>0000-0001-9265-2476 ; 0000-0003-2564-3697 ; 0000-0002-4217-0951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-019-0185-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-019-0185-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Salvalaglio, Marco</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><creatorcontrib>Elder, Ken R.</creatorcontrib><title>Closing the gap between atomic-scale lattice deformations and continuum elasticity</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomistic representation of crystalline structures that also include features typical of the microscopic scale. Analytic expressions for strain components are obtained from the complex amplitudes of the Fourier modes representing periodic lattice positions, which can be generally provided by atomistic modeling or experiments. The magnitude and phase of these amplitudes, together with the continuous description of strains, are able to characterize crystal rotations, lattice deformations, and dislocations. Moreover, combined with the so-called amplitude expansion of the phase-field crystal model, they provide a suitable tool for bridging microscopic to macroscopic scales. This study enables the in-depth analysis of elasticity effects for macroscale and mesoscale systems taking microscopic details into account.</description><subject>639/301/1034/1036</subject><subject>639/301/1034/1037</subject><subject>Amplitudes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Crystal lattices</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>Elasticity</subject><subject>Lattice vibration</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Strain analysis</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnadM2R1n8AkEQPYfZNFm7tMmapMj-e7NU0Isww8zheWfgIeSSwTWDsr2JFRO8KoDJ3K0o4IQsOIimKGUNp3_2c7KKcQeQSd7yChbkdT342LstTR-GbnFPNyZ9GeMoJj_2uogaB0MHTKnXhnbG-jBi6r2LFF1HtXepd9M0UjNgzEyfDhfkzOIQzepnLsn7_d3b-rF4fnl4Wt8-F7oUMhUIncTKykrnEqZmVgjRSm6aRlvkDMBaKyrdSOx4yyyv9aa1fIOykV2LWC7J1Xx3H_znZGJSOz8Fl18qzqHJWF3XmWIzpYOPMRir9qEfMRwUA3W0p2Z7KjtRR3sKcobPmZhZtzXh9_L_oW_alXLz</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Salvalaglio, Marco</creator><creator>Voigt, Axel</creator><creator>Elder, Ken R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9265-2476</orcidid><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid><orcidid>https://orcid.org/0000-0002-4217-0951</orcidid></search><sort><creationdate>20190411</creationdate><title>Closing the gap between atomic-scale lattice deformations and continuum elasticity</title><author>Salvalaglio, Marco ; Voigt, Axel ; Elder, Ken R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a0d9a4f94c94c5e61f555892e77cfa2100fff54c79ad281f26cb8f2ba979d8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1034/1036</topic><topic>639/301/1034/1037</topic><topic>Amplitudes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Crystal lattices</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>Elasticity</topic><topic>Lattice vibration</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Strain analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvalaglio, Marco</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><creatorcontrib>Elder, Ken R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvalaglio, Marco</au><au>Voigt, Axel</au><au>Elder, Ken R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closing the gap between atomic-scale lattice deformations and continuum elasticity</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2019-04-11</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>48</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomistic representation of crystalline structures that also include features typical of the microscopic scale. Analytic expressions for strain components are obtained from the complex amplitudes of the Fourier modes representing periodic lattice positions, which can be generally provided by atomistic modeling or experiments. The magnitude and phase of these amplitudes, together with the continuous description of strains, are able to characterize crystal rotations, lattice deformations, and dislocations. Moreover, combined with the so-called amplitude expansion of the phase-field crystal model, they provide a suitable tool for bridging microscopic to macroscopic scales. This study enables the in-depth analysis of elasticity effects for macroscale and mesoscale systems taking microscopic details into account.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-019-0185-0</doi><orcidid>https://orcid.org/0000-0001-9265-2476</orcidid><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid><orcidid>https://orcid.org/0000-0002-4217-0951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2019-04, Vol.5 (1), Article 48 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_proquest_journals_2207979666 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals |
subjects | 639/301/1034/1036 639/301/1034/1037 Amplitudes Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Crystal lattices Deformation Dislocations Elasticity Lattice vibration Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Strain analysis Theoretical |
title | Closing the gap between atomic-scale lattice deformations and continuum elasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closing%20the%20gap%20between%20atomic-scale%20lattice%20deformations%20and%20continuum%20elasticity&rft.jtitle=npj%20computational%20materials&rft.au=Salvalaglio,%20Marco&rft.date=2019-04-11&rft.volume=5&rft.issue=1&rft.artnum=48&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-019-0185-0&rft_dat=%3Cproquest_cross%3E2207979666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207979666&rft_id=info:pmid/&rfr_iscdi=true |