JUNCTION FLOWS

Junction flows occur when a boundary layer encounters an obstacle attached to the same surface. Physical phenomena that have been observed for blunt and streamlined obstacles are discussed for both laminar and turbulent approaching boundary layers. The pressure gradients around an obstacle produce a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of fluid mechanics 2001-01, Vol.33 (1), p.415-443
1. Verfasser: Simpson, Roger L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 1
container_start_page 415
container_title Annual review of fluid mechanics
container_volume 33
creator Simpson, Roger L
description Junction flows occur when a boundary layer encounters an obstacle attached to the same surface. Physical phenomena that have been observed for blunt and streamlined obstacles are discussed for both laminar and turbulent approaching boundary layers. The pressure gradients around an obstacle produce a three-dimensional separation with horseshoe vortices that wrap around the obstacle. Except for very low Reynolds number laminar flows, these vortices are highly unsteady and are responsible for high turbulence intensities, high surface pressure fluctuations and heat transfer rates, and erosion scour in the nose region of the obstacle. Calculation methods are also reviewed; methods that capture the large-scale chaotic vortical motions should be used for computations. Some work on the control, modification, or elimination of such vortices is also reviewed.
doi_str_mv 10.1146/annurev.fluid.33.1.415
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_220775154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18915287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-8324a858f104c74a685d7f7a3bf682a98222d6f536352c052ab076d0a6bf1e473</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQgOFFFKxVf4KIgrfEnf0OnqRYrZTmYIvHZZrsQkqa1myj-O_d2ILgaS4Pw8xLyBXQFECoe2yarnWfqa-7qkw5TyEVII_IAKSQiRA6OyYDSpVKBJjslJyFsKKUGpBmQC5fF7PRfJLPrsfT_P3tnJx4rIO7OMwhWYyf5qOXZJo_T0aP0wS51LvEcCbQSOOBikILVEaW2mvkS68Mw8wwxkrlJVdcsoJKhkuqVUlRLT04ofmQ3O33btvNR-fCzq6rULi6xsZtumDjoSCZ6eHNP7jadG0Tb7OMUa1lfDKi2wPCUGDtW2yKKthtW62x_bYZGKFMVA971QfDOiar3NefAmr7nPaQ0_7mtJxbsDEn_wHcyGhv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220775154</pqid></control><display><type>article</type><title>JUNCTION FLOWS</title><source>Annual Reviews</source><creator>Simpson, Roger L</creator><creatorcontrib>Simpson, Roger L</creatorcontrib><description>Junction flows occur when a boundary layer encounters an obstacle attached to the same surface. Physical phenomena that have been observed for blunt and streamlined obstacles are discussed for both laminar and turbulent approaching boundary layers. The pressure gradients around an obstacle produce a three-dimensional separation with horseshoe vortices that wrap around the obstacle. Except for very low Reynolds number laminar flows, these vortices are highly unsteady and are responsible for high turbulence intensities, high surface pressure fluctuations and heat transfer rates, and erosion scour in the nose region of the obstacle. Calculation methods are also reviewed; methods that capture the large-scale chaotic vortical motions should be used for computations. Some work on the control, modification, or elimination of such vortices is also reviewed.</description><identifier>ISSN: 0066-4189</identifier><identifier>EISSN: 1545-4479</identifier><identifier>DOI: 10.1146/annurev.fluid.33.1.415</identifier><identifier>CODEN: ARVFA3</identifier><language>eng</language><publisher>Palo Alto, CA 94303-0139: Annual Reviews</publisher><subject>Aerodynamics ; Applied fluid mechanics ; boundary layers ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; laminar ; Physics ; Rotational flow and vorticity ; Separated flows ; separation ; three-dimensional ; turbulent</subject><ispartof>Annual review of fluid mechanics, 2001-01, Vol.33 (1), p.415-443</ispartof><rights>Copyright © 2001 by Annual Reviews. All rights reserved</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Annual Reviews, Inc. 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.fluid.33.1.415?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.fluid.33.1.415$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,780,784,4024,27923,27924,27925,78254,78255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=918468$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Simpson, Roger L</creatorcontrib><title>JUNCTION FLOWS</title><title>Annual review of fluid mechanics</title><description>Junction flows occur when a boundary layer encounters an obstacle attached to the same surface. Physical phenomena that have been observed for blunt and streamlined obstacles are discussed for both laminar and turbulent approaching boundary layers. The pressure gradients around an obstacle produce a three-dimensional separation with horseshoe vortices that wrap around the obstacle. Except for very low Reynolds number laminar flows, these vortices are highly unsteady and are responsible for high turbulence intensities, high surface pressure fluctuations and heat transfer rates, and erosion scour in the nose region of the obstacle. Calculation methods are also reviewed; methods that capture the large-scale chaotic vortical motions should be used for computations. Some work on the control, modification, or elimination of such vortices is also reviewed.</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>boundary layers</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>laminar</subject><subject>Physics</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>separation</subject><subject>three-dimensional</subject><subject>turbulent</subject><issn>0066-4189</issn><issn>1545-4479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0E1Lw0AQgOFFFKxVf4KIgrfEnf0OnqRYrZTmYIvHZZrsQkqa1myj-O_d2ILgaS4Pw8xLyBXQFECoe2yarnWfqa-7qkw5TyEVII_IAKSQiRA6OyYDSpVKBJjslJyFsKKUGpBmQC5fF7PRfJLPrsfT_P3tnJx4rIO7OMwhWYyf5qOXZJo_T0aP0wS51LvEcCbQSOOBikILVEaW2mvkS68Mw8wwxkrlJVdcsoJKhkuqVUlRLT04ofmQ3O33btvNR-fCzq6rULi6xsZtumDjoSCZ6eHNP7jadG0Tb7OMUa1lfDKi2wPCUGDtW2yKKthtW62x_bYZGKFMVA971QfDOiar3NefAmr7nPaQ0_7mtJxbsDEn_wHcyGhv</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Simpson, Roger L</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>IQODW</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200101</creationdate><title>JUNCTION FLOWS</title><author>Simpson, Roger L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-8324a858f104c74a685d7f7a3bf682a98222d6f536352c052ab076d0a6bf1e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>boundary layers</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>laminar</topic><topic>Physics</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>separation</topic><topic>three-dimensional</topic><topic>turbulent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpson, Roger L</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Annual review of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpson, Roger L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JUNCTION FLOWS</atitle><jtitle>Annual review of fluid mechanics</jtitle><date>2001-01</date><risdate>2001</risdate><volume>33</volume><issue>1</issue><spage>415</spage><epage>443</epage><pages>415-443</pages><issn>0066-4189</issn><eissn>1545-4479</eissn><coden>ARVFA3</coden><abstract>Junction flows occur when a boundary layer encounters an obstacle attached to the same surface. Physical phenomena that have been observed for blunt and streamlined obstacles are discussed for both laminar and turbulent approaching boundary layers. The pressure gradients around an obstacle produce a three-dimensional separation with horseshoe vortices that wrap around the obstacle. Except for very low Reynolds number laminar flows, these vortices are highly unsteady and are responsible for high turbulence intensities, high surface pressure fluctuations and heat transfer rates, and erosion scour in the nose region of the obstacle. Calculation methods are also reviewed; methods that capture the large-scale chaotic vortical motions should be used for computations. Some work on the control, modification, or elimination of such vortices is also reviewed.</abstract><cop>Palo Alto, CA 94303-0139</cop><cop>4139 El Camino Way, P.O. Box 10139</cop><cop>USA</cop><pub>Annual Reviews</pub><doi>10.1146/annurev.fluid.33.1.415</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0066-4189
ispartof Annual review of fluid mechanics, 2001-01, Vol.33 (1), p.415-443
issn 0066-4189
1545-4479
language eng
recordid cdi_proquest_journals_220775154
source Annual Reviews
subjects Aerodynamics
Applied fluid mechanics
boundary layers
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
laminar
Physics
Rotational flow and vorticity
Separated flows
separation
three-dimensional
turbulent
title JUNCTION FLOWS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JUNCTION%20FLOWS&rft.jtitle=Annual%20review%20of%20fluid%20mechanics&rft.au=Simpson,%20Roger%20L&rft.date=2001-01&rft.volume=33&rft.issue=1&rft.spage=415&rft.epage=443&rft.pages=415-443&rft.issn=0066-4189&rft.eissn=1545-4479&rft.coden=ARVFA3&rft_id=info:doi/10.1146/annurev.fluid.33.1.415&rft_dat=%3Cproquest_pasca%3E18915287%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220775154&rft_id=info:pmid/&rfr_iscdi=true