JUNCTION FLOWS
Junction flows occur when a boundary layer encounters an obstacle attached to the same surface. Physical phenomena that have been observed for blunt and streamlined obstacles are discussed for both laminar and turbulent approaching boundary layers. The pressure gradients around an obstacle produce a...
Gespeichert in:
Veröffentlicht in: | Annual review of fluid mechanics 2001-01, Vol.33 (1), p.415-443 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 443 |
---|---|
container_issue | 1 |
container_start_page | 415 |
container_title | Annual review of fluid mechanics |
container_volume | 33 |
creator | Simpson, Roger L |
description | Junction flows occur when a boundary layer encounters an obstacle attached
to the same surface. Physical phenomena that have been observed for blunt and
streamlined obstacles are discussed for both laminar and turbulent approaching
boundary layers. The pressure gradients around an obstacle produce a
three-dimensional separation with horseshoe vortices that wrap around the
obstacle. Except for very low Reynolds number laminar flows, these vortices are
highly unsteady and are responsible for high turbulence intensities, high
surface pressure fluctuations and heat transfer rates, and erosion scour in the
nose region of the obstacle. Calculation methods are also reviewed; methods
that capture the large-scale chaotic vortical motions should be used for
computations. Some work on the control, modification, or elimination of such
vortices is also reviewed. |
doi_str_mv | 10.1146/annurev.fluid.33.1.415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_220775154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18915287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-8324a858f104c74a685d7f7a3bf682a98222d6f536352c052ab076d0a6bf1e473</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQgOFFFKxVf4KIgrfEnf0OnqRYrZTmYIvHZZrsQkqa1myj-O_d2ILgaS4Pw8xLyBXQFECoe2yarnWfqa-7qkw5TyEVII_IAKSQiRA6OyYDSpVKBJjslJyFsKKUGpBmQC5fF7PRfJLPrsfT_P3tnJx4rIO7OMwhWYyf5qOXZJo_T0aP0wS51LvEcCbQSOOBikILVEaW2mvkS68Mw8wwxkrlJVdcsoJKhkuqVUlRLT04ofmQ3O33btvNR-fCzq6rULi6xsZtumDjoSCZ6eHNP7jadG0Tb7OMUa1lfDKi2wPCUGDtW2yKKthtW62x_bYZGKFMVA971QfDOiar3NefAmr7nPaQ0_7mtJxbsDEn_wHcyGhv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220775154</pqid></control><display><type>article</type><title>JUNCTION FLOWS</title><source>Annual Reviews</source><creator>Simpson, Roger L</creator><creatorcontrib>Simpson, Roger L</creatorcontrib><description>Junction flows occur when a boundary layer encounters an obstacle attached
to the same surface. Physical phenomena that have been observed for blunt and
streamlined obstacles are discussed for both laminar and turbulent approaching
boundary layers. The pressure gradients around an obstacle produce a
three-dimensional separation with horseshoe vortices that wrap around the
obstacle. Except for very low Reynolds number laminar flows, these vortices are
highly unsteady and are responsible for high turbulence intensities, high
surface pressure fluctuations and heat transfer rates, and erosion scour in the
nose region of the obstacle. Calculation methods are also reviewed; methods
that capture the large-scale chaotic vortical motions should be used for
computations. Some work on the control, modification, or elimination of such
vortices is also reviewed.</description><identifier>ISSN: 0066-4189</identifier><identifier>EISSN: 1545-4479</identifier><identifier>DOI: 10.1146/annurev.fluid.33.1.415</identifier><identifier>CODEN: ARVFA3</identifier><language>eng</language><publisher>Palo Alto, CA 94303-0139: Annual Reviews</publisher><subject>Aerodynamics ; Applied fluid mechanics ; boundary layers ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; laminar ; Physics ; Rotational flow and vorticity ; Separated flows ; separation ; three-dimensional ; turbulent</subject><ispartof>Annual review of fluid mechanics, 2001-01, Vol.33 (1), p.415-443</ispartof><rights>Copyright © 2001 by Annual Reviews. All rights reserved</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Annual Reviews, Inc. 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.fluid.33.1.415?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.fluid.33.1.415$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,780,784,4024,27923,27924,27925,78254,78255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=918468$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Simpson, Roger L</creatorcontrib><title>JUNCTION FLOWS</title><title>Annual review of fluid mechanics</title><description>Junction flows occur when a boundary layer encounters an obstacle attached
to the same surface. Physical phenomena that have been observed for blunt and
streamlined obstacles are discussed for both laminar and turbulent approaching
boundary layers. The pressure gradients around an obstacle produce a
three-dimensional separation with horseshoe vortices that wrap around the
obstacle. Except for very low Reynolds number laminar flows, these vortices are
highly unsteady and are responsible for high turbulence intensities, high
surface pressure fluctuations and heat transfer rates, and erosion scour in the
nose region of the obstacle. Calculation methods are also reviewed; methods
that capture the large-scale chaotic vortical motions should be used for
computations. Some work on the control, modification, or elimination of such
vortices is also reviewed.</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>boundary layers</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>laminar</subject><subject>Physics</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>separation</subject><subject>three-dimensional</subject><subject>turbulent</subject><issn>0066-4189</issn><issn>1545-4479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0E1Lw0AQgOFFFKxVf4KIgrfEnf0OnqRYrZTmYIvHZZrsQkqa1myj-O_d2ILgaS4Pw8xLyBXQFECoe2yarnWfqa-7qkw5TyEVII_IAKSQiRA6OyYDSpVKBJjslJyFsKKUGpBmQC5fF7PRfJLPrsfT_P3tnJx4rIO7OMwhWYyf5qOXZJo_T0aP0wS51LvEcCbQSOOBikILVEaW2mvkS68Mw8wwxkrlJVdcsoJKhkuqVUlRLT04ofmQ3O33btvNR-fCzq6rULi6xsZtumDjoSCZ6eHNP7jadG0Tb7OMUa1lfDKi2wPCUGDtW2yKKthtW62x_bYZGKFMVA971QfDOiar3NefAmr7nPaQ0_7mtJxbsDEn_wHcyGhv</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Simpson, Roger L</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>IQODW</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200101</creationdate><title>JUNCTION FLOWS</title><author>Simpson, Roger L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-8324a858f104c74a685d7f7a3bf682a98222d6f536352c052ab076d0a6bf1e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>boundary layers</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>laminar</topic><topic>Physics</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>separation</topic><topic>three-dimensional</topic><topic>turbulent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpson, Roger L</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Annual review of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpson, Roger L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JUNCTION FLOWS</atitle><jtitle>Annual review of fluid mechanics</jtitle><date>2001-01</date><risdate>2001</risdate><volume>33</volume><issue>1</issue><spage>415</spage><epage>443</epage><pages>415-443</pages><issn>0066-4189</issn><eissn>1545-4479</eissn><coden>ARVFA3</coden><abstract>Junction flows occur when a boundary layer encounters an obstacle attached
to the same surface. Physical phenomena that have been observed for blunt and
streamlined obstacles are discussed for both laminar and turbulent approaching
boundary layers. The pressure gradients around an obstacle produce a
three-dimensional separation with horseshoe vortices that wrap around the
obstacle. Except for very low Reynolds number laminar flows, these vortices are
highly unsteady and are responsible for high turbulence intensities, high
surface pressure fluctuations and heat transfer rates, and erosion scour in the
nose region of the obstacle. Calculation methods are also reviewed; methods
that capture the large-scale chaotic vortical motions should be used for
computations. Some work on the control, modification, or elimination of such
vortices is also reviewed.</abstract><cop>Palo Alto, CA 94303-0139</cop><cop>4139 El Camino Way, P.O. Box 10139</cop><cop>USA</cop><pub>Annual Reviews</pub><doi>10.1146/annurev.fluid.33.1.415</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-4189 |
ispartof | Annual review of fluid mechanics, 2001-01, Vol.33 (1), p.415-443 |
issn | 0066-4189 1545-4479 |
language | eng |
recordid | cdi_proquest_journals_220775154 |
source | Annual Reviews |
subjects | Aerodynamics Applied fluid mechanics boundary layers Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) laminar Physics Rotational flow and vorticity Separated flows separation three-dimensional turbulent |
title | JUNCTION FLOWS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JUNCTION%20FLOWS&rft.jtitle=Annual%20review%20of%20fluid%20mechanics&rft.au=Simpson,%20Roger%20L&rft.date=2001-01&rft.volume=33&rft.issue=1&rft.spage=415&rft.epage=443&rft.pages=415-443&rft.issn=0066-4189&rft.eissn=1545-4479&rft.coden=ARVFA3&rft_id=info:doi/10.1146/annurev.fluid.33.1.415&rft_dat=%3Cproquest_pasca%3E18915287%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220775154&rft_id=info:pmid/&rfr_iscdi=true |