(\nu\texttt{bhlight}\): Radiation GRMHD for Neutrino-Driven Accretion Flows
The 2017 detection of the in-spiral and merger of two neutron stars was a landmark discovery in astrophysics. We now know that such mergers are central engines of short gamma ray bursts and sites of r-process nucleosynthesis, where the heaviest elements in our universe are formed. In the coming year...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Miller, Jonah M Ryan, Ben R Dolence, Joshua C |
description | The 2017 detection of the in-spiral and merger of two neutron stars was a landmark discovery in astrophysics. We now know that such mergers are central engines of short gamma ray bursts and sites of r-process nucleosynthesis, where the heaviest elements in our universe are formed. In the coming years, we expect many more such mergers. Modeling such systems presents a significant computational challenge along with the observational one. To meet this challenge, we present \(\nu\texttt{bhlight}\), a scheme for solving general relativistic magnetohydrodynamics with energy-dependent neutrino transport in full (3+1)-dimensions, facilitated by Monte Carlo methods. We present a suite of tests demonstrating the accuracy, efficacy, and necessity of our scheme. We demonstrate the potential of our scheme by running a sample calculation in a domain of interest---the dynamics and composition of the accretion disk formed by a binary neutron star merger. |
doi_str_mv | 10.48550/arxiv.1903.09273 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2207633848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207633848</sourcerecordid><originalsourceid>FETCH-proquest_journals_22076338483</originalsourceid><addsrcrecordid>eNqNyrsKwjAAQNEgCBbtB7gFXHRoTZO-dBOfIDqIY0FiTW1KSTQPFcR_V8QPcLrDPQB0A-SHaRShIVUPfvODESI-GuGENICDCQm8NMS4BVytK4QQjhMcRcQB634mbGbYwxjzPJY1P5fmlQ3GcEdPnBouBVzuNqsZLKSCW2aN4kJ6M8VvTMBJniv2NYta3nUHNAtaa-b-2ga9xXw_XXkXJa-WaXOopFXisw4YoyQmJA1T8p96AwoPQwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207633848</pqid></control><display><type>article</type><title>(\nu\texttt{bhlight}\): Radiation GRMHD for Neutrino-Driven Accretion Flows</title><source>Free E- Journals</source><creator>Miller, Jonah M ; Ryan, Ben R ; Dolence, Joshua C</creator><creatorcontrib>Miller, Jonah M ; Ryan, Ben R ; Dolence, Joshua C</creatorcontrib><description>The 2017 detection of the in-spiral and merger of two neutron stars was a landmark discovery in astrophysics. We now know that such mergers are central engines of short gamma ray bursts and sites of r-process nucleosynthesis, where the heaviest elements in our universe are formed. In the coming years, we expect many more such mergers. Modeling such systems presents a significant computational challenge along with the observational one. To meet this challenge, we present \(\nu\texttt{bhlight}\), a scheme for solving general relativistic magnetohydrodynamics with energy-dependent neutrino transport in full (3+1)-dimensions, facilitated by Monte Carlo methods. We present a suite of tests demonstrating the accuracy, efficacy, and necessity of our scheme. We demonstrate the potential of our scheme by running a sample calculation in a domain of interest---the dynamics and composition of the accretion disk formed by a binary neutron star merger.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1903.09273</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accretion disks ; Astrophysics ; Binary stars ; Computational fluid dynamics ; Computer simulation ; Gamma ray bursts ; Gamma rays ; Magnetohydrodynamics ; Monte Carlo simulation ; Neutrinos ; Neutron stars ; Neutrons ; Nuclear fusion ; Universe</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781,27906</link.rule.ids></links><search><creatorcontrib>Miller, Jonah M</creatorcontrib><creatorcontrib>Ryan, Ben R</creatorcontrib><creatorcontrib>Dolence, Joshua C</creatorcontrib><title>(\nu\texttt{bhlight}\): Radiation GRMHD for Neutrino-Driven Accretion Flows</title><title>arXiv.org</title><description>The 2017 detection of the in-spiral and merger of two neutron stars was a landmark discovery in astrophysics. We now know that such mergers are central engines of short gamma ray bursts and sites of r-process nucleosynthesis, where the heaviest elements in our universe are formed. In the coming years, we expect many more such mergers. Modeling such systems presents a significant computational challenge along with the observational one. To meet this challenge, we present \(\nu\texttt{bhlight}\), a scheme for solving general relativistic magnetohydrodynamics with energy-dependent neutrino transport in full (3+1)-dimensions, facilitated by Monte Carlo methods. We present a suite of tests demonstrating the accuracy, efficacy, and necessity of our scheme. We demonstrate the potential of our scheme by running a sample calculation in a domain of interest---the dynamics and composition of the accretion disk formed by a binary neutron star merger.</description><subject>Accretion disks</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Magnetohydrodynamics</subject><subject>Monte Carlo simulation</subject><subject>Neutrinos</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Nuclear fusion</subject><subject>Universe</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAAQNEgCBbtB7gFXHRoTZO-dBOfIDqIY0FiTW1KSTQPFcR_V8QPcLrDPQB0A-SHaRShIVUPfvODESI-GuGENICDCQm8NMS4BVytK4QQjhMcRcQB634mbGbYwxjzPJY1P5fmlQ3GcEdPnBouBVzuNqsZLKSCW2aN4kJ6M8VvTMBJniv2NYta3nUHNAtaa-b-2ga9xXw_XXkXJa-WaXOopFXisw4YoyQmJA1T8p96AwoPQwQ</recordid><startdate>20190321</startdate><enddate>20190321</enddate><creator>Miller, Jonah M</creator><creator>Ryan, Ben R</creator><creator>Dolence, Joshua C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20190321</creationdate><title>(\nu\texttt{bhlight}\): Radiation GRMHD for Neutrino-Driven Accretion Flows</title><author>Miller, Jonah M ; Ryan, Ben R ; Dolence, Joshua C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22076338483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accretion disks</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Magnetohydrodynamics</topic><topic>Monte Carlo simulation</topic><topic>Neutrinos</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Nuclear fusion</topic><topic>Universe</topic><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jonah M</creatorcontrib><creatorcontrib>Ryan, Ben R</creatorcontrib><creatorcontrib>Dolence, Joshua C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jonah M</au><au>Ryan, Ben R</au><au>Dolence, Joshua C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(\nu\texttt{bhlight}\): Radiation GRMHD for Neutrino-Driven Accretion Flows</atitle><jtitle>arXiv.org</jtitle><date>2019-03-21</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The 2017 detection of the in-spiral and merger of two neutron stars was a landmark discovery in astrophysics. We now know that such mergers are central engines of short gamma ray bursts and sites of r-process nucleosynthesis, where the heaviest elements in our universe are formed. In the coming years, we expect many more such mergers. Modeling such systems presents a significant computational challenge along with the observational one. To meet this challenge, we present \(\nu\texttt{bhlight}\), a scheme for solving general relativistic magnetohydrodynamics with energy-dependent neutrino transport in full (3+1)-dimensions, facilitated by Monte Carlo methods. We present a suite of tests demonstrating the accuracy, efficacy, and necessity of our scheme. We demonstrate the potential of our scheme by running a sample calculation in a domain of interest---the dynamics and composition of the accretion disk formed by a binary neutron star merger.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1903.09273</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2207633848 |
source | Free E- Journals |
subjects | Accretion disks Astrophysics Binary stars Computational fluid dynamics Computer simulation Gamma ray bursts Gamma rays Magnetohydrodynamics Monte Carlo simulation Neutrinos Neutron stars Neutrons Nuclear fusion Universe |
title | (\nu\texttt{bhlight}\): Radiation GRMHD for Neutrino-Driven Accretion Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%5Cnu%5Ctexttt%7Bbhlight%7D%5C):%20Radiation%20GRMHD%20for%20Neutrino-Driven%20Accretion%20Flows&rft.jtitle=arXiv.org&rft.au=Miller,%20Jonah%20M&rft.date=2019-03-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1903.09273&rft_dat=%3Cproquest%3E2207633848%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207633848&rft_id=info:pmid/&rfr_iscdi=true |