Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene

Using first-principles density functional theory calculations, the mechanical and electronic properties of the three main (β12, χ3, and striped) phases of single-layer borophene sheets are calculated under in-plane uniaxial/biaxial strain, including the harmonic strain-energy regions of β12, χ3, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-04, Vol.125 (14)
Hauptverfasser: Faghihnasiri, Mahdi, Jafari, Homayoun, Ramazani, Ali, Shabani, Mostafa, Estalaki, Sina Malakpour, Larson, Ronald G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Journal of applied physics
container_volume 125
creator Faghihnasiri, Mahdi
Jafari, Homayoun
Ramazani, Ali
Shabani, Mostafa
Estalaki, Sina Malakpour
Larson, Ronald G.
description Using first-principles density functional theory calculations, the mechanical and electronic properties of the three main (β12, χ3, and striped) phases of single-layer borophene sheets are calculated under in-plane uniaxial/biaxial strain, including the harmonic strain-energy regions of β12, χ3, and striped phases over the strain ranges of −3.5%–3.5%, −4.5%–4.5%, and −2.5%–2.5%, respectively, along the x direction (the direction of the highest bond orientation). We introduce a method by which the nonlinear behavior of these and any other two-dimensional materials can be investigated even above their ultimate strains, beyond which no-uniform plastic deformation occurs. Defining an appropriate deformation, and utilizing both continuum modeling and special equations based on the density functional theory, a method of computing second-, third-, and fourth-order elastic constants of the three different phases of borophene is presented that utilizes rectangular unit cells, which can substitute for any two-dimensional unit cell. Using this new method, 4 independent second-order, 6 third-order, and 9 fourth-order elastic constants are calculated, which is the complete set of elastic constants for two-dimensional structures. The electronic band structure of borophene shows anisotropic electronic behavior. Despite the metallic character of borophene sheets, applying directional strain based on deformation matrices creates a bandgap in some regions of the Brillouin zones, opening up the possibility of mechanical control of electronic properties.
doi_str_mv 10.1063/1.5079932
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207569217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207569217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-b0925f36f4514f62ee2a22fe6ba2007e6e3ce96e886b0b8c18a84ee9e08739df3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_8GCJ4Wtk6SbTY5S_ALRix4lZLcTmrLdrEla8d8bbdGDeBjmZebhnQ9CTilMKAh-SScV1EpxtkdGFKQq66qCfTICYLSUqlaH5CjGJQClkqsReX30fed6NKHAzsTk2qLBhdk4HwrTz3O46FPwQ25gh22WfZZDrmBIDmPhbZHefTl3K-yj873pisbn9gJ7PCYH1nQRT3Z5TF5urp9nd-XD0-397OqhbDmrU9mAYpXlwk4rOrWCITLDmEXRGAZQo0DeohIopWigkS2VRk4RFYKsuZpbPiZnW9-819saY9JLvw55lagZg7oSitE6U-dbqg0-xoBWD8GtTPjQFPTX9zTVu-9l9mLLxtYlk_JdP_DGh19QD9_j_4X_On8CwmZ_ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207569217</pqid></control><display><type>article</type><title>Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Faghihnasiri, Mahdi ; Jafari, Homayoun ; Ramazani, Ali ; Shabani, Mostafa ; Estalaki, Sina Malakpour ; Larson, Ronald G.</creator><creatorcontrib>Faghihnasiri, Mahdi ; Jafari, Homayoun ; Ramazani, Ali ; Shabani, Mostafa ; Estalaki, Sina Malakpour ; Larson, Ronald G.</creatorcontrib><description>Using first-principles density functional theory calculations, the mechanical and electronic properties of the three main (β12, χ3, and striped) phases of single-layer borophene sheets are calculated under in-plane uniaxial/biaxial strain, including the harmonic strain-energy regions of β12, χ3, and striped phases over the strain ranges of −3.5%–3.5%, −4.5%–4.5%, and −2.5%–2.5%, respectively, along the x direction (the direction of the highest bond orientation). We introduce a method by which the nonlinear behavior of these and any other two-dimensional materials can be investigated even above their ultimate strains, beyond which no-uniform plastic deformation occurs. Defining an appropriate deformation, and utilizing both continuum modeling and special equations based on the density functional theory, a method of computing second-, third-, and fourth-order elastic constants of the three different phases of borophene is presented that utilizes rectangular unit cells, which can substitute for any two-dimensional unit cell. Using this new method, 4 independent second-order, 6 third-order, and 9 fourth-order elastic constants are calculated, which is the complete set of elastic constants for two-dimensional structures. The electronic band structure of borophene shows anisotropic electronic behavior. Despite the metallic character of borophene sheets, applying directional strain based on deformation matrices creates a bandgap in some regions of the Brillouin zones, opening up the possibility of mechanical control of electronic properties.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5079932</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Borophene ; Brillouin zones ; Constants ; Continuum modeling ; Density functional theory ; Elastic anisotropy ; Elastic properties ; Elasticity ; First principles ; Phases ; Plastic deformation ; Sheets ; Two dimensional materials ; Unit cell</subject><ispartof>Journal of applied physics, 2019-04, Vol.125 (14)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-b0925f36f4514f62ee2a22fe6ba2007e6e3ce96e886b0b8c18a84ee9e08739df3</citedby><cites>FETCH-LOGICAL-c327t-b0925f36f4514f62ee2a22fe6ba2007e6e3ce96e886b0b8c18a84ee9e08739df3</cites><orcidid>0000-0001-8821-2128 ; 0000-0002-4613-4659 ; 0000-0001-7465-1963 ; 0000-0002-6887-1086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5079932$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Faghihnasiri, Mahdi</creatorcontrib><creatorcontrib>Jafari, Homayoun</creatorcontrib><creatorcontrib>Ramazani, Ali</creatorcontrib><creatorcontrib>Shabani, Mostafa</creatorcontrib><creatorcontrib>Estalaki, Sina Malakpour</creatorcontrib><creatorcontrib>Larson, Ronald G.</creatorcontrib><title>Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene</title><title>Journal of applied physics</title><description>Using first-principles density functional theory calculations, the mechanical and electronic properties of the three main (β12, χ3, and striped) phases of single-layer borophene sheets are calculated under in-plane uniaxial/biaxial strain, including the harmonic strain-energy regions of β12, χ3, and striped phases over the strain ranges of −3.5%–3.5%, −4.5%–4.5%, and −2.5%–2.5%, respectively, along the x direction (the direction of the highest bond orientation). We introduce a method by which the nonlinear behavior of these and any other two-dimensional materials can be investigated even above their ultimate strains, beyond which no-uniform plastic deformation occurs. Defining an appropriate deformation, and utilizing both continuum modeling and special equations based on the density functional theory, a method of computing second-, third-, and fourth-order elastic constants of the three different phases of borophene is presented that utilizes rectangular unit cells, which can substitute for any two-dimensional unit cell. Using this new method, 4 independent second-order, 6 third-order, and 9 fourth-order elastic constants are calculated, which is the complete set of elastic constants for two-dimensional structures. The electronic band structure of borophene shows anisotropic electronic behavior. Despite the metallic character of borophene sheets, applying directional strain based on deformation matrices creates a bandgap in some regions of the Brillouin zones, opening up the possibility of mechanical control of electronic properties.</description><subject>Applied physics</subject><subject>Borophene</subject><subject>Brillouin zones</subject><subject>Constants</subject><subject>Continuum modeling</subject><subject>Density functional theory</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Elasticity</subject><subject>First principles</subject><subject>Phases</subject><subject>Plastic deformation</subject><subject>Sheets</subject><subject>Two dimensional materials</subject><subject>Unit cell</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_8GCJ4Wtk6SbTY5S_ALRix4lZLcTmrLdrEla8d8bbdGDeBjmZebhnQ9CTilMKAh-SScV1EpxtkdGFKQq66qCfTICYLSUqlaH5CjGJQClkqsReX30fed6NKHAzsTk2qLBhdk4HwrTz3O46FPwQ25gh22WfZZDrmBIDmPhbZHefTl3K-yj873pisbn9gJ7PCYH1nQRT3Z5TF5urp9nd-XD0-397OqhbDmrU9mAYpXlwk4rOrWCITLDmEXRGAZQo0DeohIopWigkS2VRk4RFYKsuZpbPiZnW9-819saY9JLvw55lagZg7oSitE6U-dbqg0-xoBWD8GtTPjQFPTX9zTVu-9l9mLLxtYlk_JdP_DGh19QD9_j_4X_On8CwmZ_ZA</recordid><startdate>20190414</startdate><enddate>20190414</enddate><creator>Faghihnasiri, Mahdi</creator><creator>Jafari, Homayoun</creator><creator>Ramazani, Ali</creator><creator>Shabani, Mostafa</creator><creator>Estalaki, Sina Malakpour</creator><creator>Larson, Ronald G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8821-2128</orcidid><orcidid>https://orcid.org/0000-0002-4613-4659</orcidid><orcidid>https://orcid.org/0000-0001-7465-1963</orcidid><orcidid>https://orcid.org/0000-0002-6887-1086</orcidid></search><sort><creationdate>20190414</creationdate><title>Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene</title><author>Faghihnasiri, Mahdi ; Jafari, Homayoun ; Ramazani, Ali ; Shabani, Mostafa ; Estalaki, Sina Malakpour ; Larson, Ronald G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-b0925f36f4514f62ee2a22fe6ba2007e6e3ce96e886b0b8c18a84ee9e08739df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Borophene</topic><topic>Brillouin zones</topic><topic>Constants</topic><topic>Continuum modeling</topic><topic>Density functional theory</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Elasticity</topic><topic>First principles</topic><topic>Phases</topic><topic>Plastic deformation</topic><topic>Sheets</topic><topic>Two dimensional materials</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faghihnasiri, Mahdi</creatorcontrib><creatorcontrib>Jafari, Homayoun</creatorcontrib><creatorcontrib>Ramazani, Ali</creatorcontrib><creatorcontrib>Shabani, Mostafa</creatorcontrib><creatorcontrib>Estalaki, Sina Malakpour</creatorcontrib><creatorcontrib>Larson, Ronald G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faghihnasiri, Mahdi</au><au>Jafari, Homayoun</au><au>Ramazani, Ali</au><au>Shabani, Mostafa</au><au>Estalaki, Sina Malakpour</au><au>Larson, Ronald G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene</atitle><jtitle>Journal of applied physics</jtitle><date>2019-04-14</date><risdate>2019</risdate><volume>125</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Using first-principles density functional theory calculations, the mechanical and electronic properties of the three main (β12, χ3, and striped) phases of single-layer borophene sheets are calculated under in-plane uniaxial/biaxial strain, including the harmonic strain-energy regions of β12, χ3, and striped phases over the strain ranges of −3.5%–3.5%, −4.5%–4.5%, and −2.5%–2.5%, respectively, along the x direction (the direction of the highest bond orientation). We introduce a method by which the nonlinear behavior of these and any other two-dimensional materials can be investigated even above their ultimate strains, beyond which no-uniform plastic deformation occurs. Defining an appropriate deformation, and utilizing both continuum modeling and special equations based on the density functional theory, a method of computing second-, third-, and fourth-order elastic constants of the three different phases of borophene is presented that utilizes rectangular unit cells, which can substitute for any two-dimensional unit cell. Using this new method, 4 independent second-order, 6 third-order, and 9 fourth-order elastic constants are calculated, which is the complete set of elastic constants for two-dimensional structures. The electronic band structure of borophene shows anisotropic electronic behavior. Despite the metallic character of borophene sheets, applying directional strain based on deformation matrices creates a bandgap in some regions of the Brillouin zones, opening up the possibility of mechanical control of electronic properties.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5079932</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8821-2128</orcidid><orcidid>https://orcid.org/0000-0002-4613-4659</orcidid><orcidid>https://orcid.org/0000-0001-7465-1963</orcidid><orcidid>https://orcid.org/0000-0002-6887-1086</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-04, Vol.125 (14)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2207569217
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Borophene
Brillouin zones
Constants
Continuum modeling
Density functional theory
Elastic anisotropy
Elastic properties
Elasticity
First principles
Phases
Plastic deformation
Sheets
Two dimensional materials
Unit cell
title Nonlinear elastic behavior and anisotropic electronic properties of two-dimensional borophene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20elastic%20behavior%20and%20anisotropic%20electronic%20properties%20of%20two-dimensional%20borophene&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Faghihnasiri,%20Mahdi&rft.date=2019-04-14&rft.volume=125&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5079932&rft_dat=%3Cproquest_cross%3E2207569217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207569217&rft_id=info:pmid/&rfr_iscdi=true