Scaling of Drag Coefficients Under Five Tropical Cyclones

The drag coefficient, often used to parameterize the surface wind stress τ, beneath tropical cyclones (TCs) is a critical but poorly known factor controlling TC intensity. Here, τ is estimated using current measurements taken by 12 Electromagnetic Autonomous Profiling Explorer floats beneath the for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2019-03, Vol.46 (6), p.3349-3358
Hauptverfasser: Hsu, Je‐Yuan, Lien, Ren‐Chieh, D'Asaro, Eric A., Sanford, Thomas B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3358
container_issue 6
container_start_page 3349
container_title Geophysical research letters
container_volume 46
creator Hsu, Je‐Yuan
Lien, Ren‐Chieh
D'Asaro, Eric A.
Sanford, Thomas B.
description The drag coefficient, often used to parameterize the surface wind stress τ, beneath tropical cyclones (TCs) is a critical but poorly known factor controlling TC intensity. Here, τ is estimated using current measurements taken by 12 Electromagnetic Autonomous Profiling Explorer floats beneath the forward half of five TCs. Combining estimates of τ and aircraft measurements of winds U10, the downwind drag coefficient C∥~ and the angle ϕ clockwise orientation from U10 to τ are computed. At |U10| = 25–40 m/s, C∥~ and ϕ vary over (0.8–3.1) × 10−3 and −15–40°, respectively. A new nondimensional parameter “effective wind duration,” a function of |U10|, storm translation speed, and positions in TCs, predicts C∥~ to within 25%. The largest C∥~ and smallest ϕ occur at high winds, in the forward right quadrant of fast‐moving storms. These dependences are explained by variations in surface wave age and breaking under different wave forcing regimes. Plain Language Summary The forecast of tropical cyclone intensification is critical to the protection of coastlines, involving the complicated tropical cyclone‐ocean interaction. The wind of storms can force strong near‐inertial current via surface wind stress (often parameterized by a drag coefficient Cd), and then induce the upper ocean cooling due to the shear instability. The transferred momentum and reduced heat supply can both restrict tropical cyclones' development. In other words, the Cd can affect the prediction of momentum and thermal response under storms, and thereby the forecast on storm intensity. This study investigates the spatial variability of downwind drag coefficient Cd under five different tropical cyclones, by integrating the storm‐induced ocean momentum because previous results of Cd as a function of wind speed |U10| are scattered significantly at |U10|=25‐40 m/s. Here, larger Cd in the front‐right sector of faster storms than that of slower stoms is found, presumably due to the surface wave effect. A new parameterization of Cd using the surface wave properties under tropical cyclones is proposed, which largely improves the conventional parameterization of Cd(|U10|). Future studies on the tropical cyclone‐wave‐ocean interaction and storm intensification forecast will be benefited from this new parameterization. Key Points Drag coefficients under five different tropical cyclones New data‐based parameterization of drag coefficients using surface wave effects
doi_str_mv 10.1029/2018GL081574
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207460534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207460534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3446-e40a40de0f196fc0d128921cbb5329cdf490e1a66e497a425f588f19efc33d473</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbHzh8QcOvozWPyWMpoqzAgaLsOaSYpKeOkJq3Sf-9IXbhydc7i4144CF0RuCVA9R0FomYtKFJLfoQmRHNeKQB5jCYAeuxUilN0VsoaABgwMkH6zdk-DiucAn7IdoWb5EOILvphW_Bi6HzG0_jp8TynTRwtbvauT4MvF-gk2L74y988R4vp47x5qtqX2XNz31aOcS4qz8Fy6DwEokVw0BGqNCVuuawZ1a4LXIMnVgjPtbSc1qFWarQ-OMY6Ltk5uj7c3eT0sfNla9Zpl4fxpaEUJBdQMz6qm4NyOZWSfTCbHN9t3hsC5mcc83eckdMD_4q93_9rzey1rZUkgn0DpOJjQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207460534</pqid></control><display><type>article</type><title>Scaling of Drag Coefficients Under Five Tropical Cyclones</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Hsu, Je‐Yuan ; Lien, Ren‐Chieh ; D'Asaro, Eric A. ; Sanford, Thomas B.</creator><creatorcontrib>Hsu, Je‐Yuan ; Lien, Ren‐Chieh ; D'Asaro, Eric A. ; Sanford, Thomas B.</creatorcontrib><description>The drag coefficient, often used to parameterize the surface wind stress τ, beneath tropical cyclones (TCs) is a critical but poorly known factor controlling TC intensity. Here, τ is estimated using current measurements taken by 12 Electromagnetic Autonomous Profiling Explorer floats beneath the forward half of five TCs. Combining estimates of τ and aircraft measurements of winds U10, the downwind drag coefficient C∥~ and the angle ϕ clockwise orientation from U10 to τ are computed. At |U10| = 25–40 m/s, C∥~ and ϕ vary over (0.8–3.1) × 10−3 and −15–40°, respectively. A new nondimensional parameter “effective wind duration,” a function of |U10|, storm translation speed, and positions in TCs, predicts C∥~ to within 25%. The largest C∥~ and smallest ϕ occur at high winds, in the forward right quadrant of fast‐moving storms. These dependences are explained by variations in surface wave age and breaking under different wave forcing regimes. Plain Language Summary The forecast of tropical cyclone intensification is critical to the protection of coastlines, involving the complicated tropical cyclone‐ocean interaction. The wind of storms can force strong near‐inertial current via surface wind stress (often parameterized by a drag coefficient Cd), and then induce the upper ocean cooling due to the shear instability. The transferred momentum and reduced heat supply can both restrict tropical cyclones' development. In other words, the Cd can affect the prediction of momentum and thermal response under storms, and thereby the forecast on storm intensity. This study investigates the spatial variability of downwind drag coefficient Cd under five different tropical cyclones, by integrating the storm‐induced ocean momentum because previous results of Cd as a function of wind speed |U10| are scattered significantly at |U10|=25‐40 m/s. Here, larger Cd in the front‐right sector of faster storms than that of slower stoms is found, presumably due to the surface wave effect. A new parameterization of Cd using the surface wave properties under tropical cyclones is proposed, which largely improves the conventional parameterization of Cd(|U10|). Future studies on the tropical cyclone‐wave‐ocean interaction and storm intensification forecast will be benefited from this new parameterization. Key Points Drag coefficients under five different tropical cyclones New data‐based parameterization of drag coefficients using surface wave effects</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL081574</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Amplification ; Coastal protection ; Coastal zone management ; crosswind surface wind stress ; Cyclones ; Drag ; Drag coefficient ; Drag coefficients ; Drifters ; Duration ; Environmental protection ; Floats ; Hurricanes ; Inertial currents ; Instability ; Kelvin-Helmholtz instability ; Momentum ; new parameterization of drag coefficient ; Oceans ; Orientation ; Parameterization ; Scaling ; Spatial variability ; Spatial variations ; Storm forecasting ; Storms ; storm‐induced momentum ; Surface water waves ; surface wave effect ; Surface waves ; Surface wind ; Thermal response ; Tropical climate ; Tropical cyclone intensities ; Tropical cyclones ; Upper ocean ; Wave properties ; Wind speed ; Wind stress ; Winds</subject><ispartof>Geophysical research letters, 2019-03, Vol.46 (6), p.3349-3358</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3446-e40a40de0f196fc0d128921cbb5329cdf490e1a66e497a425f588f19efc33d473</citedby><cites>FETCH-LOGICAL-c3446-e40a40de0f196fc0d128921cbb5329cdf490e1a66e497a425f588f19efc33d473</cites><orcidid>0000-0002-8453-854X ; 0000-0002-4229-2633 ; 0000-0002-8566-2139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL081574$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL081574$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Hsu, Je‐Yuan</creatorcontrib><creatorcontrib>Lien, Ren‐Chieh</creatorcontrib><creatorcontrib>D'Asaro, Eric A.</creatorcontrib><creatorcontrib>Sanford, Thomas B.</creatorcontrib><title>Scaling of Drag Coefficients Under Five Tropical Cyclones</title><title>Geophysical research letters</title><description>The drag coefficient, often used to parameterize the surface wind stress τ, beneath tropical cyclones (TCs) is a critical but poorly known factor controlling TC intensity. Here, τ is estimated using current measurements taken by 12 Electromagnetic Autonomous Profiling Explorer floats beneath the forward half of five TCs. Combining estimates of τ and aircraft measurements of winds U10, the downwind drag coefficient C∥~ and the angle ϕ clockwise orientation from U10 to τ are computed. At |U10| = 25–40 m/s, C∥~ and ϕ vary over (0.8–3.1) × 10−3 and −15–40°, respectively. A new nondimensional parameter “effective wind duration,” a function of |U10|, storm translation speed, and positions in TCs, predicts C∥~ to within 25%. The largest C∥~ and smallest ϕ occur at high winds, in the forward right quadrant of fast‐moving storms. These dependences are explained by variations in surface wave age and breaking under different wave forcing regimes. Plain Language Summary The forecast of tropical cyclone intensification is critical to the protection of coastlines, involving the complicated tropical cyclone‐ocean interaction. The wind of storms can force strong near‐inertial current via surface wind stress (often parameterized by a drag coefficient Cd), and then induce the upper ocean cooling due to the shear instability. The transferred momentum and reduced heat supply can both restrict tropical cyclones' development. In other words, the Cd can affect the prediction of momentum and thermal response under storms, and thereby the forecast on storm intensity. This study investigates the spatial variability of downwind drag coefficient Cd under five different tropical cyclones, by integrating the storm‐induced ocean momentum because previous results of Cd as a function of wind speed |U10| are scattered significantly at |U10|=25‐40 m/s. Here, larger Cd in the front‐right sector of faster storms than that of slower stoms is found, presumably due to the surface wave effect. A new parameterization of Cd using the surface wave properties under tropical cyclones is proposed, which largely improves the conventional parameterization of Cd(|U10|). Future studies on the tropical cyclone‐wave‐ocean interaction and storm intensification forecast will be benefited from this new parameterization. Key Points Drag coefficients under five different tropical cyclones New data‐based parameterization of drag coefficients using surface wave effects</description><subject>Amplification</subject><subject>Coastal protection</subject><subject>Coastal zone management</subject><subject>crosswind surface wind stress</subject><subject>Cyclones</subject><subject>Drag</subject><subject>Drag coefficient</subject><subject>Drag coefficients</subject><subject>Drifters</subject><subject>Duration</subject><subject>Environmental protection</subject><subject>Floats</subject><subject>Hurricanes</subject><subject>Inertial currents</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>Momentum</subject><subject>new parameterization of drag coefficient</subject><subject>Oceans</subject><subject>Orientation</subject><subject>Parameterization</subject><subject>Scaling</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Storm forecasting</subject><subject>Storms</subject><subject>storm‐induced momentum</subject><subject>Surface water waves</subject><subject>surface wave effect</subject><subject>Surface waves</subject><subject>Surface wind</subject><subject>Thermal response</subject><subject>Tropical climate</subject><subject>Tropical cyclone intensities</subject><subject>Tropical cyclones</subject><subject>Upper ocean</subject><subject>Wave properties</subject><subject>Wind speed</subject><subject>Wind stress</subject><subject>Winds</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtbHzh8QcOvozWPyWMpoqzAgaLsOaSYpKeOkJq3Sf-9IXbhydc7i4144CF0RuCVA9R0FomYtKFJLfoQmRHNeKQB5jCYAeuxUilN0VsoaABgwMkH6zdk-DiucAn7IdoWb5EOILvphW_Bi6HzG0_jp8TynTRwtbvauT4MvF-gk2L74y988R4vp47x5qtqX2XNz31aOcS4qz8Fy6DwEokVw0BGqNCVuuawZ1a4LXIMnVgjPtbSc1qFWarQ-OMY6Ltk5uj7c3eT0sfNla9Zpl4fxpaEUJBdQMz6qm4NyOZWSfTCbHN9t3hsC5mcc83eckdMD_4q93_9rzey1rZUkgn0DpOJjQw</recordid><startdate>20190328</startdate><enddate>20190328</enddate><creator>Hsu, Je‐Yuan</creator><creator>Lien, Ren‐Chieh</creator><creator>D'Asaro, Eric A.</creator><creator>Sanford, Thomas B.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8453-854X</orcidid><orcidid>https://orcid.org/0000-0002-4229-2633</orcidid><orcidid>https://orcid.org/0000-0002-8566-2139</orcidid></search><sort><creationdate>20190328</creationdate><title>Scaling of Drag Coefficients Under Five Tropical Cyclones</title><author>Hsu, Je‐Yuan ; Lien, Ren‐Chieh ; D'Asaro, Eric A. ; Sanford, Thomas B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3446-e40a40de0f196fc0d128921cbb5329cdf490e1a66e497a425f588f19efc33d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplification</topic><topic>Coastal protection</topic><topic>Coastal zone management</topic><topic>crosswind surface wind stress</topic><topic>Cyclones</topic><topic>Drag</topic><topic>Drag coefficient</topic><topic>Drag coefficients</topic><topic>Drifters</topic><topic>Duration</topic><topic>Environmental protection</topic><topic>Floats</topic><topic>Hurricanes</topic><topic>Inertial currents</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>Momentum</topic><topic>new parameterization of drag coefficient</topic><topic>Oceans</topic><topic>Orientation</topic><topic>Parameterization</topic><topic>Scaling</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Storm forecasting</topic><topic>Storms</topic><topic>storm‐induced momentum</topic><topic>Surface water waves</topic><topic>surface wave effect</topic><topic>Surface waves</topic><topic>Surface wind</topic><topic>Thermal response</topic><topic>Tropical climate</topic><topic>Tropical cyclone intensities</topic><topic>Tropical cyclones</topic><topic>Upper ocean</topic><topic>Wave properties</topic><topic>Wind speed</topic><topic>Wind stress</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Je‐Yuan</creatorcontrib><creatorcontrib>Lien, Ren‐Chieh</creatorcontrib><creatorcontrib>D'Asaro, Eric A.</creatorcontrib><creatorcontrib>Sanford, Thomas B.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Je‐Yuan</au><au>Lien, Ren‐Chieh</au><au>D'Asaro, Eric A.</au><au>Sanford, Thomas B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling of Drag Coefficients Under Five Tropical Cyclones</atitle><jtitle>Geophysical research letters</jtitle><date>2019-03-28</date><risdate>2019</risdate><volume>46</volume><issue>6</issue><spage>3349</spage><epage>3358</epage><pages>3349-3358</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The drag coefficient, often used to parameterize the surface wind stress τ, beneath tropical cyclones (TCs) is a critical but poorly known factor controlling TC intensity. Here, τ is estimated using current measurements taken by 12 Electromagnetic Autonomous Profiling Explorer floats beneath the forward half of five TCs. Combining estimates of τ and aircraft measurements of winds U10, the downwind drag coefficient C∥~ and the angle ϕ clockwise orientation from U10 to τ are computed. At |U10| = 25–40 m/s, C∥~ and ϕ vary over (0.8–3.1) × 10−3 and −15–40°, respectively. A new nondimensional parameter “effective wind duration,” a function of |U10|, storm translation speed, and positions in TCs, predicts C∥~ to within 25%. The largest C∥~ and smallest ϕ occur at high winds, in the forward right quadrant of fast‐moving storms. These dependences are explained by variations in surface wave age and breaking under different wave forcing regimes. Plain Language Summary The forecast of tropical cyclone intensification is critical to the protection of coastlines, involving the complicated tropical cyclone‐ocean interaction. The wind of storms can force strong near‐inertial current via surface wind stress (often parameterized by a drag coefficient Cd), and then induce the upper ocean cooling due to the shear instability. The transferred momentum and reduced heat supply can both restrict tropical cyclones' development. In other words, the Cd can affect the prediction of momentum and thermal response under storms, and thereby the forecast on storm intensity. This study investigates the spatial variability of downwind drag coefficient Cd under five different tropical cyclones, by integrating the storm‐induced ocean momentum because previous results of Cd as a function of wind speed |U10| are scattered significantly at |U10|=25‐40 m/s. Here, larger Cd in the front‐right sector of faster storms than that of slower stoms is found, presumably due to the surface wave effect. A new parameterization of Cd using the surface wave properties under tropical cyclones is proposed, which largely improves the conventional parameterization of Cd(|U10|). Future studies on the tropical cyclone‐wave‐ocean interaction and storm intensification forecast will be benefited from this new parameterization. Key Points Drag coefficients under five different tropical cyclones New data‐based parameterization of drag coefficients using surface wave effects</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL081574</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8453-854X</orcidid><orcidid>https://orcid.org/0000-0002-4229-2633</orcidid><orcidid>https://orcid.org/0000-0002-8566-2139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-03, Vol.46 (6), p.3349-3358
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2207460534
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Amplification
Coastal protection
Coastal zone management
crosswind surface wind stress
Cyclones
Drag
Drag coefficient
Drag coefficients
Drifters
Duration
Environmental protection
Floats
Hurricanes
Inertial currents
Instability
Kelvin-Helmholtz instability
Momentum
new parameterization of drag coefficient
Oceans
Orientation
Parameterization
Scaling
Spatial variability
Spatial variations
Storm forecasting
Storms
storm‐induced momentum
Surface water waves
surface wave effect
Surface waves
Surface wind
Thermal response
Tropical climate
Tropical cyclone intensities
Tropical cyclones
Upper ocean
Wave properties
Wind speed
Wind stress
Winds
title Scaling of Drag Coefficients Under Five Tropical Cyclones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20of%20Drag%20Coefficients%20Under%20Five%20Tropical%20Cyclones&rft.jtitle=Geophysical%20research%20letters&rft.au=Hsu,%20Je%E2%80%90Yuan&rft.date=2019-03-28&rft.volume=46&rft.issue=6&rft.spage=3349&rft.epage=3358&rft.pages=3349-3358&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL081574&rft_dat=%3Cproquest_cross%3E2207460534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207460534&rft_id=info:pmid/&rfr_iscdi=true