Rill flow resistance law under equilibrium bed‐load transport conditions
In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity dist...
Gespeichert in:
Veröffentlicht in: | Hydrological processes 2019-04, Vol.33 (9), p.1317-1323 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1323 |
---|---|
container_issue | 9 |
container_start_page | 1317 |
container_title | Hydrological processes |
container_volume | 33 |
creator | Di Stefano, Costanza Nicosia, Alessio Pampalone, Vincenzo Palmeri, Vincenzo Ferro, Vito |
description | In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors. |
doi_str_mv | 10.1002/hyp.13402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207203030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207203030</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqEw8AaWmBjSXtv5cUZUAQVVAiEYmCwndoQrN07tRFU2HoFn5ElICSs6w1m-e4_0IXRJYE4A6OJjaOeEJUCPUESgKGICPD1GEXCexhnw_BSdhbABgAQ4ROjxxViLa-v22OtgQiebSmMr97hvlPZY73pjTelNv8WlVt-fX9ZJhTsvm9A63-HKNcp0xjXhHJ3U0gZ98dcz9HZ3-7pcxeun-4flzTqWjAKNGWE5l1Dl5dgJ1ISWmYRcaQIJ0aDyTBYKqqLgPGEpkFSpipGUlSOdgWRshq6mv613u16HTmxc75txUlAKOQV2yAxdT1TlXQhe16L1Ziv9IAiIgyoxqhK_qkZ2MbF7Y_XwPyhW78_TxQ8puWqJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207203030</pqid></control><display><type>article</type><title>Rill flow resistance law under equilibrium bed‐load transport conditions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Di Stefano, Costanza ; Nicosia, Alessio ; Pampalone, Vincenzo ; Palmeri, Vincenzo ; Ferro, Vito</creator><creatorcontrib>Di Stefano, Costanza ; Nicosia, Alessio ; Pampalone, Vincenzo ; Palmeri, Vincenzo ; Ferro, Vito</creatorcontrib><description>In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.13402</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Bed load ; Channel flow ; Dimensional analysis ; Flow resistance ; Flow velocity ; flow velocity profile ; Friction factor ; Froude number ; Mathematical analysis ; Open channel flow ; Open channels ; rill flow resistance ; Sediment transport ; self‐similarity ; Slopes ; Transport ; Velocity ; Velocity distribution</subject><ispartof>Hydrological processes, 2019-04, Vol.33 (9), p.1317-1323</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</citedby><cites>FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</cites><orcidid>0000-0003-3020-3119 ; 0000-0002-5195-9209 ; 0000-0001-6594-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.13402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.13402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Di Stefano, Costanza</creatorcontrib><creatorcontrib>Nicosia, Alessio</creatorcontrib><creatorcontrib>Pampalone, Vincenzo</creatorcontrib><creatorcontrib>Palmeri, Vincenzo</creatorcontrib><creatorcontrib>Ferro, Vito</creatorcontrib><title>Rill flow resistance law under equilibrium bed‐load transport conditions</title><title>Hydrological processes</title><description>In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.</description><subject>Bed load</subject><subject>Channel flow</subject><subject>Dimensional analysis</subject><subject>Flow resistance</subject><subject>Flow velocity</subject><subject>flow velocity profile</subject><subject>Friction factor</subject><subject>Froude number</subject><subject>Mathematical analysis</subject><subject>Open channel flow</subject><subject>Open channels</subject><subject>rill flow resistance</subject><subject>Sediment transport</subject><subject>self‐similarity</subject><subject>Slopes</subject><subject>Transport</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqEw8AaWmBjSXtv5cUZUAQVVAiEYmCwndoQrN07tRFU2HoFn5ElICSs6w1m-e4_0IXRJYE4A6OJjaOeEJUCPUESgKGICPD1GEXCexhnw_BSdhbABgAQ4ROjxxViLa-v22OtgQiebSmMr97hvlPZY73pjTelNv8WlVt-fX9ZJhTsvm9A63-HKNcp0xjXhHJ3U0gZ98dcz9HZ3-7pcxeun-4flzTqWjAKNGWE5l1Dl5dgJ1ISWmYRcaQIJ0aDyTBYKqqLgPGEpkFSpipGUlSOdgWRshq6mv613u16HTmxc75txUlAKOQV2yAxdT1TlXQhe16L1Ziv9IAiIgyoxqhK_qkZ2MbF7Y_XwPyhW78_TxQ8puWqJ</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Di Stefano, Costanza</creator><creator>Nicosia, Alessio</creator><creator>Pampalone, Vincenzo</creator><creator>Palmeri, Vincenzo</creator><creator>Ferro, Vito</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3020-3119</orcidid><orcidid>https://orcid.org/0000-0002-5195-9209</orcidid><orcidid>https://orcid.org/0000-0001-6594-9530</orcidid></search><sort><creationdate>20190430</creationdate><title>Rill flow resistance law under equilibrium bed‐load transport conditions</title><author>Di Stefano, Costanza ; Nicosia, Alessio ; Pampalone, Vincenzo ; Palmeri, Vincenzo ; Ferro, Vito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bed load</topic><topic>Channel flow</topic><topic>Dimensional analysis</topic><topic>Flow resistance</topic><topic>Flow velocity</topic><topic>flow velocity profile</topic><topic>Friction factor</topic><topic>Froude number</topic><topic>Mathematical analysis</topic><topic>Open channel flow</topic><topic>Open channels</topic><topic>rill flow resistance</topic><topic>Sediment transport</topic><topic>self‐similarity</topic><topic>Slopes</topic><topic>Transport</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Stefano, Costanza</creatorcontrib><creatorcontrib>Nicosia, Alessio</creatorcontrib><creatorcontrib>Pampalone, Vincenzo</creatorcontrib><creatorcontrib>Palmeri, Vincenzo</creatorcontrib><creatorcontrib>Ferro, Vito</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Stefano, Costanza</au><au>Nicosia, Alessio</au><au>Pampalone, Vincenzo</au><au>Palmeri, Vincenzo</au><au>Ferro, Vito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rill flow resistance law under equilibrium bed‐load transport conditions</atitle><jtitle>Hydrological processes</jtitle><date>2019-04-30</date><risdate>2019</risdate><volume>33</volume><issue>9</issue><spage>1317</spage><epage>1323</epage><pages>1317-1323</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/hyp.13402</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3020-3119</orcidid><orcidid>https://orcid.org/0000-0002-5195-9209</orcidid><orcidid>https://orcid.org/0000-0001-6594-9530</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6087 |
ispartof | Hydrological processes, 2019-04, Vol.33 (9), p.1317-1323 |
issn | 0885-6087 1099-1085 |
language | eng |
recordid | cdi_proquest_journals_2207203030 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bed load Channel flow Dimensional analysis Flow resistance Flow velocity flow velocity profile Friction factor Froude number Mathematical analysis Open channel flow Open channels rill flow resistance Sediment transport self‐similarity Slopes Transport Velocity Velocity distribution |
title | Rill flow resistance law under equilibrium bed‐load transport conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rill%20flow%20resistance%20law%20under%20equilibrium%20bed%E2%80%90load%20transport%20conditions&rft.jtitle=Hydrological%20processes&rft.au=Di%20Stefano,%20Costanza&rft.date=2019-04-30&rft.volume=33&rft.issue=9&rft.spage=1317&rft.epage=1323&rft.pages=1317-1323&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.13402&rft_dat=%3Cproquest_cross%3E2207203030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207203030&rft_id=info:pmid/&rfr_iscdi=true |