Rill flow resistance law under equilibrium bed‐load transport conditions

In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2019-04, Vol.33 (9), p.1317-1323
Hauptverfasser: Di Stefano, Costanza, Nicosia, Alessio, Pampalone, Vincenzo, Palmeri, Vincenzo, Ferro, Vito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1323
container_issue 9
container_start_page 1317
container_title Hydrological processes
container_volume 33
creator Di Stefano, Costanza
Nicosia, Alessio
Pampalone, Vincenzo
Palmeri, Vincenzo
Ferro, Vito
description In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations  and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.
doi_str_mv 10.1002/hyp.13402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207203030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207203030</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqEw8AaWmBjSXtv5cUZUAQVVAiEYmCwndoQrN07tRFU2HoFn5ElICSs6w1m-e4_0IXRJYE4A6OJjaOeEJUCPUESgKGICPD1GEXCexhnw_BSdhbABgAQ4ROjxxViLa-v22OtgQiebSmMr97hvlPZY73pjTelNv8WlVt-fX9ZJhTsvm9A63-HKNcp0xjXhHJ3U0gZ98dcz9HZ3-7pcxeun-4flzTqWjAKNGWE5l1Dl5dgJ1ISWmYRcaQIJ0aDyTBYKqqLgPGEpkFSpipGUlSOdgWRshq6mv613u16HTmxc75txUlAKOQV2yAxdT1TlXQhe16L1Ziv9IAiIgyoxqhK_qkZ2MbF7Y_XwPyhW78_TxQ8puWqJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207203030</pqid></control><display><type>article</type><title>Rill flow resistance law under equilibrium bed‐load transport conditions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Di Stefano, Costanza ; Nicosia, Alessio ; Pampalone, Vincenzo ; Palmeri, Vincenzo ; Ferro, Vito</creator><creatorcontrib>Di Stefano, Costanza ; Nicosia, Alessio ; Pampalone, Vincenzo ; Palmeri, Vincenzo ; Ferro, Vito</creatorcontrib><description>In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations  and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.13402</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Bed load ; Channel flow ; Dimensional analysis ; Flow resistance ; Flow velocity ; flow velocity profile ; Friction factor ; Froude number ; Mathematical analysis ; Open channel flow ; Open channels ; rill flow resistance ; Sediment transport ; self‐similarity ; Slopes ; Transport ; Velocity ; Velocity distribution</subject><ispartof>Hydrological processes, 2019-04, Vol.33 (9), p.1317-1323</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</citedby><cites>FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</cites><orcidid>0000-0003-3020-3119 ; 0000-0002-5195-9209 ; 0000-0001-6594-9530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.13402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.13402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Di Stefano, Costanza</creatorcontrib><creatorcontrib>Nicosia, Alessio</creatorcontrib><creatorcontrib>Pampalone, Vincenzo</creatorcontrib><creatorcontrib>Palmeri, Vincenzo</creatorcontrib><creatorcontrib>Ferro, Vito</creatorcontrib><title>Rill flow resistance law under equilibrium bed‐load transport conditions</title><title>Hydrological processes</title><description>In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations  and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.</description><subject>Bed load</subject><subject>Channel flow</subject><subject>Dimensional analysis</subject><subject>Flow resistance</subject><subject>Flow velocity</subject><subject>flow velocity profile</subject><subject>Friction factor</subject><subject>Froude number</subject><subject>Mathematical analysis</subject><subject>Open channel flow</subject><subject>Open channels</subject><subject>rill flow resistance</subject><subject>Sediment transport</subject><subject>self‐similarity</subject><subject>Slopes</subject><subject>Transport</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqEw8AaWmBjSXtv5cUZUAQVVAiEYmCwndoQrN07tRFU2HoFn5ElICSs6w1m-e4_0IXRJYE4A6OJjaOeEJUCPUESgKGICPD1GEXCexhnw_BSdhbABgAQ4ROjxxViLa-v22OtgQiebSmMr97hvlPZY73pjTelNv8WlVt-fX9ZJhTsvm9A63-HKNcp0xjXhHJ3U0gZ98dcz9HZ3-7pcxeun-4flzTqWjAKNGWE5l1Dl5dgJ1ISWmYRcaQIJ0aDyTBYKqqLgPGEpkFSpipGUlSOdgWRshq6mv613u16HTmxc75txUlAKOQV2yAxdT1TlXQhe16L1Ziv9IAiIgyoxqhK_qkZ2MbF7Y_XwPyhW78_TxQ8puWqJ</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Di Stefano, Costanza</creator><creator>Nicosia, Alessio</creator><creator>Pampalone, Vincenzo</creator><creator>Palmeri, Vincenzo</creator><creator>Ferro, Vito</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3020-3119</orcidid><orcidid>https://orcid.org/0000-0002-5195-9209</orcidid><orcidid>https://orcid.org/0000-0001-6594-9530</orcidid></search><sort><creationdate>20190430</creationdate><title>Rill flow resistance law under equilibrium bed‐load transport conditions</title><author>Di Stefano, Costanza ; Nicosia, Alessio ; Pampalone, Vincenzo ; Palmeri, Vincenzo ; Ferro, Vito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3202-31378a0c7b37840f12b6a07de1041e0d76a9d0c9988435015ddc3153b78460a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bed load</topic><topic>Channel flow</topic><topic>Dimensional analysis</topic><topic>Flow resistance</topic><topic>Flow velocity</topic><topic>flow velocity profile</topic><topic>Friction factor</topic><topic>Froude number</topic><topic>Mathematical analysis</topic><topic>Open channel flow</topic><topic>Open channels</topic><topic>rill flow resistance</topic><topic>Sediment transport</topic><topic>self‐similarity</topic><topic>Slopes</topic><topic>Transport</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Stefano, Costanza</creatorcontrib><creatorcontrib>Nicosia, Alessio</creatorcontrib><creatorcontrib>Pampalone, Vincenzo</creatorcontrib><creatorcontrib>Palmeri, Vincenzo</creatorcontrib><creatorcontrib>Ferro, Vito</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Stefano, Costanza</au><au>Nicosia, Alessio</au><au>Pampalone, Vincenzo</au><au>Palmeri, Vincenzo</au><au>Ferro, Vito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rill flow resistance law under equilibrium bed‐load transport conditions</atitle><jtitle>Hydrological processes</jtitle><date>2019-04-30</date><risdate>2019</risdate><volume>33</volume><issue>9</issue><spage>1317</spage><epage>1323</epage><pages>1317-1323</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations  and . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/hyp.13402</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3020-3119</orcidid><orcidid>https://orcid.org/0000-0002-5195-9209</orcidid><orcidid>https://orcid.org/0000-0001-6594-9530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2019-04, Vol.33 (9), p.1317-1323
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_journals_2207203030
source Wiley Online Library Journals Frontfile Complete
subjects Bed load
Channel flow
Dimensional analysis
Flow resistance
Flow velocity
flow velocity profile
Friction factor
Froude number
Mathematical analysis
Open channel flow
Open channels
rill flow resistance
Sediment transport
self‐similarity
Slopes
Transport
Velocity
Velocity distribution
title Rill flow resistance law under equilibrium bed‐load transport conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rill%20flow%20resistance%20law%20under%20equilibrium%20bed%E2%80%90load%20transport%20conditions&rft.jtitle=Hydrological%20processes&rft.au=Di%20Stefano,%20Costanza&rft.date=2019-04-30&rft.volume=33&rft.issue=9&rft.spage=1317&rft.epage=1323&rft.pages=1317-1323&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.13402&rft_dat=%3Cproquest_cross%3E2207203030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207203030&rft_id=info:pmid/&rfr_iscdi=true