Numerically investigation of ignition process in a premixed methane-air swirl configuration

Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-03, Vol.171, p.830-841
Hauptverfasser: EidiAttarZade, Masoud, Tabejamaat, Sadegh, Mani, Mahmoud, Farshchi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 841
container_issue
container_start_page 830
container_title Energy (Oxford)
container_volume 171
creator EidiAttarZade, Masoud
Tabejamaat, Sadegh
Mani, Mahmoud
Farshchi, Mohammad
description Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface. •Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase.
doi_str_mv 10.1016/j.energy.2019.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207145241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219300052</els_id><sourcerecordid>2207145241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjEOWEdO68LEqp4SRVc4MTBcuxNcJQ4xU6A_j1uy5nTzkozsztDyCWFhALNr7sELbp2m6RAqwRoApAdkQUtCxbnRZkdkwWwHOKM8_SUnHnfQWCUVbUg78_zgM4o2ffbyNgv9JNp5WRGG41NZFpr9njjRoXeB0Ykw4KD-UEdDTh9SIuxNC7y38b1kRptY9rZ7R3OyUkje48Xf3NJ3u7vXleP8frl4Wl1u44VY3yKK51JKlOda10g5ikwkFhSlBIgryXUua5Rp5zRRsuMspJXAVKsi7qp85KzJbk6-IYvP-eQQHTj7Gw4KdIUCsqzlNPA4geWcqP3DhuxcWaQbisoiF2NohOHGsWuRgFUhJKC7OYgw5Dgy6ATXhm0CrVxqCahR_O_wS89d3-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207145241</pqid></control><display><type>article</type><title>Numerically investigation of ignition process in a premixed methane-air swirl configuration</title><source>Elsevier ScienceDirect Journals Complete</source><creator>EidiAttarZade, Masoud ; Tabejamaat, Sadegh ; Mani, Mahmoud ; Farshchi, Mohammad</creator><creatorcontrib>EidiAttarZade, Masoud ; Tabejamaat, Sadegh ; Mani, Mahmoud ; Farshchi, Mohammad</creatorcontrib><description>Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface. •Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.01.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Configurations ; Curvature ; Ignition ; Large eddy simulation ; Mathematical models ; Methane ; Numerical combustion ; Radial velocity ; Reacting flow ; Scale models ; Simulation ; Stabilization ; Swirl ; Thickened flame model ; Velocity ; Velocity distribution ; Vortices</subject><ispartof>Energy (Oxford), 2019-03, Vol.171, p.830-841</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</citedby><cites>FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>EidiAttarZade, Masoud</creatorcontrib><creatorcontrib>Tabejamaat, Sadegh</creatorcontrib><creatorcontrib>Mani, Mahmoud</creatorcontrib><creatorcontrib>Farshchi, Mohammad</creatorcontrib><title>Numerically investigation of ignition process in a premixed methane-air swirl configuration</title><title>Energy (Oxford)</title><description>Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface. •Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase.</description><subject>Computer simulation</subject><subject>Configurations</subject><subject>Curvature</subject><subject>Ignition</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Numerical combustion</subject><subject>Radial velocity</subject><subject>Reacting flow</subject><subject>Scale models</subject><subject>Simulation</subject><subject>Stabilization</subject><subject>Swirl</subject><subject>Thickened flame model</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Vortices</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjEOWEdO68LEqp4SRVc4MTBcuxNcJQ4xU6A_j1uy5nTzkozsztDyCWFhALNr7sELbp2m6RAqwRoApAdkQUtCxbnRZkdkwWwHOKM8_SUnHnfQWCUVbUg78_zgM4o2ffbyNgv9JNp5WRGG41NZFpr9njjRoXeB0Ykw4KD-UEdDTh9SIuxNC7y38b1kRptY9rZ7R3OyUkje48Xf3NJ3u7vXleP8frl4Wl1u44VY3yKK51JKlOda10g5ikwkFhSlBIgryXUua5Rp5zRRsuMspJXAVKsi7qp85KzJbk6-IYvP-eQQHTj7Gw4KdIUCsqzlNPA4geWcqP3DhuxcWaQbisoiF2NohOHGsWuRgFUhJKC7OYgw5Dgy6ATXhm0CrVxqCahR_O_wS89d3-o</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>EidiAttarZade, Masoud</creator><creator>Tabejamaat, Sadegh</creator><creator>Mani, Mahmoud</creator><creator>Farshchi, Mohammad</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190315</creationdate><title>Numerically investigation of ignition process in a premixed methane-air swirl configuration</title><author>EidiAttarZade, Masoud ; Tabejamaat, Sadegh ; Mani, Mahmoud ; Farshchi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Configurations</topic><topic>Curvature</topic><topic>Ignition</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Numerical combustion</topic><topic>Radial velocity</topic><topic>Reacting flow</topic><topic>Scale models</topic><topic>Simulation</topic><topic>Stabilization</topic><topic>Swirl</topic><topic>Thickened flame model</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EidiAttarZade, Masoud</creatorcontrib><creatorcontrib>Tabejamaat, Sadegh</creatorcontrib><creatorcontrib>Mani, Mahmoud</creatorcontrib><creatorcontrib>Farshchi, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EidiAttarZade, Masoud</au><au>Tabejamaat, Sadegh</au><au>Mani, Mahmoud</au><au>Farshchi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerically investigation of ignition process in a premixed methane-air swirl configuration</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>171</volume><spage>830</spage><epage>841</epage><pages>830-841</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface. •Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.01.005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-03, Vol.171, p.830-841
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2207145241
source Elsevier ScienceDirect Journals Complete
subjects Computer simulation
Configurations
Curvature
Ignition
Large eddy simulation
Mathematical models
Methane
Numerical combustion
Radial velocity
Reacting flow
Scale models
Simulation
Stabilization
Swirl
Thickened flame model
Velocity
Velocity distribution
Vortices
title Numerically investigation of ignition process in a premixed methane-air swirl configuration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerically%20investigation%20of%20ignition%20process%20in%20a%20premixed%20methane-air%20swirl%20configuration&rft.jtitle=Energy%20(Oxford)&rft.au=EidiAttarZade,%20Masoud&rft.date=2019-03-15&rft.volume=171&rft.spage=830&rft.epage=841&rft.pages=830-841&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.01.005&rft_dat=%3Cproquest_cross%3E2207145241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207145241&rft_id=info:pmid/&rft_els_id=S0360544219300052&rfr_iscdi=true