Numerically investigation of ignition process in a premixed methane-air swirl configuration
Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial ve...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-03, Vol.171, p.830-841 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 841 |
---|---|
container_issue | |
container_start_page | 830 |
container_title | Energy (Oxford) |
container_volume | 171 |
creator | EidiAttarZade, Masoud Tabejamaat, Sadegh Mani, Mahmoud Farshchi, Mohammad |
description | Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface.
•Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase. |
doi_str_mv | 10.1016/j.energy.2019.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207145241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219300052</els_id><sourcerecordid>2207145241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcIjEOWEdO68LEqp4SRVc4MTBcuxNcJQ4xU6A_j1uy5nTzkozsztDyCWFhALNr7sELbp2m6RAqwRoApAdkQUtCxbnRZkdkwWwHOKM8_SUnHnfQWCUVbUg78_zgM4o2ffbyNgv9JNp5WRGG41NZFpr9njjRoXeB0Ykw4KD-UEdDTh9SIuxNC7y38b1kRptY9rZ7R3OyUkje48Xf3NJ3u7vXleP8frl4Wl1u44VY3yKK51JKlOda10g5ikwkFhSlBIgryXUua5Rp5zRRsuMspJXAVKsi7qp85KzJbk6-IYvP-eQQHTj7Gw4KdIUCsqzlNPA4geWcqP3DhuxcWaQbisoiF2NohOHGsWuRgFUhJKC7OYgw5Dgy6ATXhm0CrVxqCahR_O_wS89d3-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207145241</pqid></control><display><type>article</type><title>Numerically investigation of ignition process in a premixed methane-air swirl configuration</title><source>Elsevier ScienceDirect Journals Complete</source><creator>EidiAttarZade, Masoud ; Tabejamaat, Sadegh ; Mani, Mahmoud ; Farshchi, Mohammad</creator><creatorcontrib>EidiAttarZade, Masoud ; Tabejamaat, Sadegh ; Mani, Mahmoud ; Farshchi, Mohammad</creatorcontrib><description>Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface.
•Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.01.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Configurations ; Curvature ; Ignition ; Large eddy simulation ; Mathematical models ; Methane ; Numerical combustion ; Radial velocity ; Reacting flow ; Scale models ; Simulation ; Stabilization ; Swirl ; Thickened flame model ; Velocity ; Velocity distribution ; Vortices</subject><ispartof>Energy (Oxford), 2019-03, Vol.171, p.830-841</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</citedby><cites>FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>EidiAttarZade, Masoud</creatorcontrib><creatorcontrib>Tabejamaat, Sadegh</creatorcontrib><creatorcontrib>Mani, Mahmoud</creatorcontrib><creatorcontrib>Farshchi, Mohammad</creatorcontrib><title>Numerically investigation of ignition process in a premixed methane-air swirl configuration</title><title>Energy (Oxford)</title><description>Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface.
•Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase.</description><subject>Computer simulation</subject><subject>Configurations</subject><subject>Curvature</subject><subject>Ignition</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Numerical combustion</subject><subject>Radial velocity</subject><subject>Reacting flow</subject><subject>Scale models</subject><subject>Simulation</subject><subject>Stabilization</subject><subject>Swirl</subject><subject>Thickened flame model</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Vortices</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcIjEOWEdO68LEqp4SRVc4MTBcuxNcJQ4xU6A_j1uy5nTzkozsztDyCWFhALNr7sELbp2m6RAqwRoApAdkQUtCxbnRZkdkwWwHOKM8_SUnHnfQWCUVbUg78_zgM4o2ffbyNgv9JNp5WRGG41NZFpr9njjRoXeB0Ykw4KD-UEdDTh9SIuxNC7y38b1kRptY9rZ7R3OyUkje48Xf3NJ3u7vXleP8frl4Wl1u44VY3yKK51JKlOda10g5ikwkFhSlBIgryXUua5Rp5zRRsuMspJXAVKsi7qp85KzJbk6-IYvP-eQQHTj7Gw4KdIUCsqzlNPA4geWcqP3DhuxcWaQbisoiF2NohOHGsWuRgFUhJKC7OYgw5Dgy6ATXhm0CrVxqCahR_O_wS89d3-o</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>EidiAttarZade, Masoud</creator><creator>Tabejamaat, Sadegh</creator><creator>Mani, Mahmoud</creator><creator>Farshchi, Mohammad</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190315</creationdate><title>Numerically investigation of ignition process in a premixed methane-air swirl configuration</title><author>EidiAttarZade, Masoud ; Tabejamaat, Sadegh ; Mani, Mahmoud ; Farshchi, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9d5a1a2d6dd7ee62030ae81eaa006ba0b6dbed2431fda51384931f1eb7bfb6843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Configurations</topic><topic>Curvature</topic><topic>Ignition</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Numerical combustion</topic><topic>Radial velocity</topic><topic>Reacting flow</topic><topic>Scale models</topic><topic>Simulation</topic><topic>Stabilization</topic><topic>Swirl</topic><topic>Thickened flame model</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EidiAttarZade, Masoud</creatorcontrib><creatorcontrib>Tabejamaat, Sadegh</creatorcontrib><creatorcontrib>Mani, Mahmoud</creatorcontrib><creatorcontrib>Farshchi, Mohammad</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EidiAttarZade, Masoud</au><au>Tabejamaat, Sadegh</au><au>Mani, Mahmoud</au><au>Farshchi, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerically investigation of ignition process in a premixed methane-air swirl configuration</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>171</volume><spage>830</spage><epage>841</epage><pages>830-841</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Ignition process in a premixed methane-air swirl configuration is studied using a large eddy simulation method with Smagorinsky sub-grid scale model. A developed thickened flame combustion approach with two-step methane-air mechanism is used. Non-reacting mean and RMS axial, tangential and radial velocity profiles are validated against the experimental results. It is shown that the flow field consists of four zones: Inner Recirculation Zone, Inner Shear Layer, Outer Shear Layer and Corner Recirculation Zone. The mean and RMS of velocities and temperature in reacting flow are then validated against the experimental data. Large eddy simulation is used to investigate the ignition sequence by sparking in the four zones in the flow field. Flame growth, propagation and stabilization are studied for these cases. Results show that sparking in IRZ has the fastest flame growth and takes the minimum time to reach flame stabilization. Propagating flame surface in all cases has sharp flame edges, without any hysteresis for flame position. Finally, flame structures are analyzed by flame curvature and the effect of flow field velocity on the flame surface.
•Ignition process is investigated by large eddy simulation and thickened flame model.•Sparking in IRZ has the fastest flame growth and minimum time to flame stabilization.•Flame attachment position doesn't show any hysteresis with respect to spark position.•The major controlling mechanism is the velocity direction in the propagation phase.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.01.005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-03, Vol.171, p.830-841 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2207145241 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computer simulation Configurations Curvature Ignition Large eddy simulation Mathematical models Methane Numerical combustion Radial velocity Reacting flow Scale models Simulation Stabilization Swirl Thickened flame model Velocity Velocity distribution Vortices |
title | Numerically investigation of ignition process in a premixed methane-air swirl configuration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerically%20investigation%20of%20ignition%20process%20in%20a%20premixed%20methane-air%20swirl%20configuration&rft.jtitle=Energy%20(Oxford)&rft.au=EidiAttarZade,%20Masoud&rft.date=2019-03-15&rft.volume=171&rft.spage=830&rft.epage=841&rft.pages=830-841&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.01.005&rft_dat=%3Cproquest_cross%3E2207145241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207145241&rft_id=info:pmid/&rft_els_id=S0360544219300052&rfr_iscdi=true |