Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries

Spinning neutron stars acquire a quadrupole moment due to their own rotation. This quadratic-in-spin, self-spin effect depends on the equation of state (EOS) and affects the orbital motion and rate of inspiral of neutron star binaries. Building upon circularized post-Newtonian results, we incorporat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-02, Vol.99 (4), Article 044007
Hauptverfasser: Nagar, Alessandro, Messina, Francesco, Rettegno, Piero, Bini, Donato, Damour, Thibault, Geralico, Andrea, Akcay, Sarp, Bernuzzi, Sebastiano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. D
container_volume 99
creator Nagar, Alessandro
Messina, Francesco
Rettegno, Piero
Bini, Donato
Damour, Thibault
Geralico, Andrea
Akcay, Sarp
Bernuzzi, Sebastiano
description Spinning neutron stars acquire a quadrupole moment due to their own rotation. This quadratic-in-spin, self-spin effect depends on the equation of state (EOS) and affects the orbital motion and rate of inspiral of neutron star binaries. Building upon circularized post-Newtonian results, we incorporate the EOS-dependent self-spin (or monopole-quadrupole) terms in the spin-aligned effective-one-body (EOB) waveform model TEOBResumS at next-to-next-to-leading (NNLO) order, together with other (bilinear, cubic and quartic) nonlinear-in-spin effects (at leading order, LO). We point out that the structure of the Hamiltonian of TEOBResumS is such that it already incorporates, in the binary black hole case, the recently computed [Levi and Steinhoff, arXiv:1607.04252] quartic-in-spin LO term. Using the gauge-invariant characterization of the phasing provided by the function Qω=ω2/ω˙ of ω=2πf, where f is the gravitational wave frequency, we study the EOS dependence of the self-spin effects and show that: (i) the next-to-leading order (NLO) and NNLO monopole-quadrupole corrections yield increasingly phase-accelerating effects compared to the corresponding LO contribution; (ii) the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN) EOS-dependent self-spin effects makes their action stronger than the corresponding EOB description; (iii) the addition to the standard 3PN TaylorF2 post-Newtonian phasing description of self-spin tail effects at LO allows one to reconcile the self-spin part of the TaylorF2 PN phasing with the corresponding TEOBResumS one up to dimensionless frequencies Mω≃0.04–0.06. Such a tail-augmented TaylorF2 approximant then yields an analytically simplified, EOB-faithful, representation of the EOS-dependent self-spin phasing that can be useful to improve current PN-based (or phenomenological) waveform models for inspiralling neutron star binaries. Finally, by generating the inspiral dynamics using the post-adiabatic approximation, incorporated in a new implementation of TEOBResumS, one finds that the computational time needed to obtain a typical waveform (including all multipoles up to ℓ=8) from 10 Hz is of the order of 0.4 sec.
doi_str_mv 10.1103/PhysRevD.99.044007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2207144237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207144237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e93c683e8ecac38f3c51e181929a154d4225d97e817a9df6584ce0e7e31eb67f3</originalsourceid><addsrcrecordid>eNo9kU9LAzEQxRdRsGi_gKeAJ6GpmWS32RxL_VOhqIieQ7o7aVO2SU22lX57t1R7mjfD7z0GXpbdABsCMHH_vtynD9w9DJUasjxnTJ5lPZ5LRhnj6vykgV1m_ZRWrJMjpiRAL2tfg2-cRxOp8zRtnCdoLVZtIifpdkiDRzoP9Z78mB3aENdkHWpsEgmWHFzUNG7hsR50tm6PpulSFwPicdvG4ElqTSRz5010mK6zC2uahP2_eZV9PT1-TqZ09vb8MhnPaCVk0VJUohqVAkusTCVKK6oCEEpQXBko8jrnvKiVxBKkUbUdFWVeIUOJAnA-klZcZXfH3KVp9Ca6tYl7HYzT0_FMH24MlCw4hx107O2R3cTwvcXU6lXYRt-9pzlnEvKcC9lR_EhVMaQU0Z5igelDGfq_DK2UPpYhfgGqGn9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207144237</pqid></control><display><type>article</type><title>Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries</title><source>American Physical Society Journals</source><creator>Nagar, Alessandro ; Messina, Francesco ; Rettegno, Piero ; Bini, Donato ; Damour, Thibault ; Geralico, Andrea ; Akcay, Sarp ; Bernuzzi, Sebastiano</creator><creatorcontrib>Nagar, Alessandro ; Messina, Francesco ; Rettegno, Piero ; Bini, Donato ; Damour, Thibault ; Geralico, Andrea ; Akcay, Sarp ; Bernuzzi, Sebastiano</creatorcontrib><description>Spinning neutron stars acquire a quadrupole moment due to their own rotation. This quadratic-in-spin, self-spin effect depends on the equation of state (EOS) and affects the orbital motion and rate of inspiral of neutron star binaries. Building upon circularized post-Newtonian results, we incorporate the EOS-dependent self-spin (or monopole-quadrupole) terms in the spin-aligned effective-one-body (EOB) waveform model TEOBResumS at next-to-next-to-leading (NNLO) order, together with other (bilinear, cubic and quartic) nonlinear-in-spin effects (at leading order, LO). We point out that the structure of the Hamiltonian of TEOBResumS is such that it already incorporates, in the binary black hole case, the recently computed [Levi and Steinhoff, arXiv:1607.04252] quartic-in-spin LO term. Using the gauge-invariant characterization of the phasing provided by the function Qω=ω2/ω˙ of ω=2πf, where f is the gravitational wave frequency, we study the EOS dependence of the self-spin effects and show that: (i) the next-to-leading order (NLO) and NNLO monopole-quadrupole corrections yield increasingly phase-accelerating effects compared to the corresponding LO contribution; (ii) the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN) EOS-dependent self-spin effects makes their action stronger than the corresponding EOB description; (iii) the addition to the standard 3PN TaylorF2 post-Newtonian phasing description of self-spin tail effects at LO allows one to reconcile the self-spin part of the TaylorF2 PN phasing with the corresponding TEOBResumS one up to dimensionless frequencies Mω≃0.04–0.06. Such a tail-augmented TaylorF2 approximant then yields an analytically simplified, EOB-faithful, representation of the EOS-dependent self-spin phasing that can be useful to improve current PN-based (or phenomenological) waveform models for inspiralling neutron star binaries. Finally, by generating the inspiral dynamics using the post-adiabatic approximation, incorporated in a new implementation of TEOBResumS, one finds that the computational time needed to obtain a typical waveform (including all multipoles up to ℓ=8) from 10 Hz is of the order of 0.4 sec.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.99.044007</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Binary stars ; Computing time ; Dependence ; Equations of state ; General Relativity and Quantum Cosmology ; Gravitational waves ; Monopoles ; Multipoles ; Neutron stars ; Neutrons ; Physics ; Quadrupoles</subject><ispartof>Physical review. D, 2019-02, Vol.99 (4), Article 044007</ispartof><rights>Copyright American Physical Society Feb 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e93c683e8ecac38f3c51e181929a154d4225d97e817a9df6584ce0e7e31eb67f3</citedby><cites>FETCH-LOGICAL-c375t-e93c683e8ecac38f3c51e181929a154d4225d97e817a9df6584ce0e7e31eb67f3</cites><orcidid>0000-0001-8076-7217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01975221$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagar, Alessandro</creatorcontrib><creatorcontrib>Messina, Francesco</creatorcontrib><creatorcontrib>Rettegno, Piero</creatorcontrib><creatorcontrib>Bini, Donato</creatorcontrib><creatorcontrib>Damour, Thibault</creatorcontrib><creatorcontrib>Geralico, Andrea</creatorcontrib><creatorcontrib>Akcay, Sarp</creatorcontrib><creatorcontrib>Bernuzzi, Sebastiano</creatorcontrib><title>Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries</title><title>Physical review. D</title><description>Spinning neutron stars acquire a quadrupole moment due to their own rotation. This quadratic-in-spin, self-spin effect depends on the equation of state (EOS) and affects the orbital motion and rate of inspiral of neutron star binaries. Building upon circularized post-Newtonian results, we incorporate the EOS-dependent self-spin (or monopole-quadrupole) terms in the spin-aligned effective-one-body (EOB) waveform model TEOBResumS at next-to-next-to-leading (NNLO) order, together with other (bilinear, cubic and quartic) nonlinear-in-spin effects (at leading order, LO). We point out that the structure of the Hamiltonian of TEOBResumS is such that it already incorporates, in the binary black hole case, the recently computed [Levi and Steinhoff, arXiv:1607.04252] quartic-in-spin LO term. Using the gauge-invariant characterization of the phasing provided by the function Qω=ω2/ω˙ of ω=2πf, where f is the gravitational wave frequency, we study the EOS dependence of the self-spin effects and show that: (i) the next-to-leading order (NLO) and NNLO monopole-quadrupole corrections yield increasingly phase-accelerating effects compared to the corresponding LO contribution; (ii) the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN) EOS-dependent self-spin effects makes their action stronger than the corresponding EOB description; (iii) the addition to the standard 3PN TaylorF2 post-Newtonian phasing description of self-spin tail effects at LO allows one to reconcile the self-spin part of the TaylorF2 PN phasing with the corresponding TEOBResumS one up to dimensionless frequencies Mω≃0.04–0.06. Such a tail-augmented TaylorF2 approximant then yields an analytically simplified, EOB-faithful, representation of the EOS-dependent self-spin phasing that can be useful to improve current PN-based (or phenomenological) waveform models for inspiralling neutron star binaries. Finally, by generating the inspiral dynamics using the post-adiabatic approximation, incorporated in a new implementation of TEOBResumS, one finds that the computational time needed to obtain a typical waveform (including all multipoles up to ℓ=8) from 10 Hz is of the order of 0.4 sec.</description><subject>Binary stars</subject><subject>Computing time</subject><subject>Dependence</subject><subject>Equations of state</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gravitational waves</subject><subject>Monopoles</subject><subject>Multipoles</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Physics</subject><subject>Quadrupoles</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kU9LAzEQxRdRsGi_gKeAJ6GpmWS32RxL_VOhqIieQ7o7aVO2SU22lX57t1R7mjfD7z0GXpbdABsCMHH_vtynD9w9DJUasjxnTJ5lPZ5LRhnj6vykgV1m_ZRWrJMjpiRAL2tfg2-cRxOp8zRtnCdoLVZtIifpdkiDRzoP9Z78mB3aENdkHWpsEgmWHFzUNG7hsR50tm6PpulSFwPicdvG4ElqTSRz5010mK6zC2uahP2_eZV9PT1-TqZ09vb8MhnPaCVk0VJUohqVAkusTCVKK6oCEEpQXBko8jrnvKiVxBKkUbUdFWVeIUOJAnA-klZcZXfH3KVp9Ca6tYl7HYzT0_FMH24MlCw4hx107O2R3cTwvcXU6lXYRt-9pzlnEvKcC9lR_EhVMaQU0Z5igelDGfq_DK2UPpYhfgGqGn9Q</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Nagar, Alessandro</creator><creator>Messina, Francesco</creator><creator>Rettegno, Piero</creator><creator>Bini, Donato</creator><creator>Damour, Thibault</creator><creator>Geralico, Andrea</creator><creator>Akcay, Sarp</creator><creator>Bernuzzi, Sebastiano</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8076-7217</orcidid></search><sort><creationdate>20190215</creationdate><title>Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries</title><author>Nagar, Alessandro ; Messina, Francesco ; Rettegno, Piero ; Bini, Donato ; Damour, Thibault ; Geralico, Andrea ; Akcay, Sarp ; Bernuzzi, Sebastiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e93c683e8ecac38f3c51e181929a154d4225d97e817a9df6584ce0e7e31eb67f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binary stars</topic><topic>Computing time</topic><topic>Dependence</topic><topic>Equations of state</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gravitational waves</topic><topic>Monopoles</topic><topic>Multipoles</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Physics</topic><topic>Quadrupoles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagar, Alessandro</creatorcontrib><creatorcontrib>Messina, Francesco</creatorcontrib><creatorcontrib>Rettegno, Piero</creatorcontrib><creatorcontrib>Bini, Donato</creatorcontrib><creatorcontrib>Damour, Thibault</creatorcontrib><creatorcontrib>Geralico, Andrea</creatorcontrib><creatorcontrib>Akcay, Sarp</creatorcontrib><creatorcontrib>Bernuzzi, Sebastiano</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagar, Alessandro</au><au>Messina, Francesco</au><au>Rettegno, Piero</au><au>Bini, Donato</au><au>Damour, Thibault</au><au>Geralico, Andrea</au><au>Akcay, Sarp</au><au>Bernuzzi, Sebastiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries</atitle><jtitle>Physical review. D</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>99</volume><issue>4</issue><artnum>044007</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Spinning neutron stars acquire a quadrupole moment due to their own rotation. This quadratic-in-spin, self-spin effect depends on the equation of state (EOS) and affects the orbital motion and rate of inspiral of neutron star binaries. Building upon circularized post-Newtonian results, we incorporate the EOS-dependent self-spin (or monopole-quadrupole) terms in the spin-aligned effective-one-body (EOB) waveform model TEOBResumS at next-to-next-to-leading (NNLO) order, together with other (bilinear, cubic and quartic) nonlinear-in-spin effects (at leading order, LO). We point out that the structure of the Hamiltonian of TEOBResumS is such that it already incorporates, in the binary black hole case, the recently computed [Levi and Steinhoff, arXiv:1607.04252] quartic-in-spin LO term. Using the gauge-invariant characterization of the phasing provided by the function Qω=ω2/ω˙ of ω=2πf, where f is the gravitational wave frequency, we study the EOS dependence of the self-spin effects and show that: (i) the next-to-leading order (NLO) and NNLO monopole-quadrupole corrections yield increasingly phase-accelerating effects compared to the corresponding LO contribution; (ii) the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN) EOS-dependent self-spin effects makes their action stronger than the corresponding EOB description; (iii) the addition to the standard 3PN TaylorF2 post-Newtonian phasing description of self-spin tail effects at LO allows one to reconcile the self-spin part of the TaylorF2 PN phasing with the corresponding TEOBResumS one up to dimensionless frequencies Mω≃0.04–0.06. Such a tail-augmented TaylorF2 approximant then yields an analytically simplified, EOB-faithful, representation of the EOS-dependent self-spin phasing that can be useful to improve current PN-based (or phenomenological) waveform models for inspiralling neutron star binaries. Finally, by generating the inspiral dynamics using the post-adiabatic approximation, incorporated in a new implementation of TEOBResumS, one finds that the computational time needed to obtain a typical waveform (including all multipoles up to ℓ=8) from 10 Hz is of the order of 0.4 sec.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.99.044007</doi><orcidid>https://orcid.org/0000-0001-8076-7217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-02, Vol.99 (4), Article 044007
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2207144237
source American Physical Society Journals
subjects Binary stars
Computing time
Dependence
Equations of state
General Relativity and Quantum Cosmology
Gravitational waves
Monopoles
Multipoles
Neutron stars
Neutrons
Physics
Quadrupoles
title Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear-in-spin%20effects%20in%20effective-one-body%20waveform%20models%20of%20spin-aligned,%20inspiralling,%20neutron%20star%20binaries&rft.jtitle=Physical%20review.%20D&rft.au=Nagar,%20Alessandro&rft.date=2019-02-15&rft.volume=99&rft.issue=4&rft.artnum=044007&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.99.044007&rft_dat=%3Cproquest_hal_p%3E2207144237%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207144237&rft_id=info:pmid/&rfr_iscdi=true