Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe
Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stabi...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-02, Vol.99 (7), p.075160, Article 075160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 075160 |
container_title | Physical review. B |
container_volume | 99 |
creator | Zhou, Wenzhe Chen, Jianyong Yang, Zhixiong Liu, Junwei Ouyang, Fangping |
description | Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY. |
doi_str_mv | 10.1103/PhysRevB.99.075160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207138175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207138175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOHQv4FXAWztPkjZZLnXoVAbKpngZ0vQUN9pmJq3Qt7ej06vzH_6Pc-Aj5IrBjDEQt29ffVzjz_1M6xmojEk4IROeSp1oLfXpf87gnExj3AHAwGgFekLWS_Q1tqGntikoVuja4Juto7ENnWu7gNSXtPaNr2yP4Ybm22M48HVXteNOX2zTRfq52eAlOSttFXF6nBfk4_HhffGUrF6Xz4u7VeKEhjYRIpOFSnMmtFUyFal0spxznRc8m2sAVMhSAdZCwXNRKu2EExytRF4iH6oLcj3e3Qf_3WFszc53oRleGs5BMTFnKhsoPlIu-BgDlmYftrUNvWFgDvrMnz6jtRn1iV8RGWQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207138175</pqid></control><display><type>article</type><title>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</title><source>American Physical Society Journals</source><creator>Zhou, Wenzhe ; Chen, Jianyong ; Yang, Zhixiong ; Liu, Junwei ; Ouyang, Fangping</creator><creatorcontrib>Zhou, Wenzhe ; Chen, Jianyong ; Yang, Zhixiong ; Liu, Junwei ; Ouyang, Fangping</creatorcontrib><description>Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.075160</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Asymmetry ; Bilayers ; Dipole moments ; Electron spin ; Electronic properties ; Electronic structure ; First principles ; Interlayers ; Multilayers ; Photovoltaic cells ; Solar cells ; Splitting ; Stacking ; Structural stability ; Symmetry ; Transition metal compounds ; Yttrium</subject><ispartof>Physical review. B, 2019-02, Vol.99 (7), p.075160, Article 075160</ispartof><rights>Copyright American Physical Society Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</citedby><cites>FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Wenzhe</creatorcontrib><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Liu, Junwei</creatorcontrib><creatorcontrib>Ouyang, Fangping</creatorcontrib><title>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</title><title>Physical review. B</title><description>Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY.</description><subject>Asymmetry</subject><subject>Bilayers</subject><subject>Dipole moments</subject><subject>Electron spin</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>First principles</subject><subject>Interlayers</subject><subject>Multilayers</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Splitting</subject><subject>Stacking</subject><subject>Structural stability</subject><subject>Symmetry</subject><subject>Transition metal compounds</subject><subject>Yttrium</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOHQv4FXAWztPkjZZLnXoVAbKpngZ0vQUN9pmJq3Qt7ej06vzH_6Pc-Aj5IrBjDEQt29ffVzjz_1M6xmojEk4IROeSp1oLfXpf87gnExj3AHAwGgFekLWS_Q1tqGntikoVuja4Juto7ENnWu7gNSXtPaNr2yP4Ybm22M48HVXteNOX2zTRfq52eAlOSttFXF6nBfk4_HhffGUrF6Xz4u7VeKEhjYRIpOFSnMmtFUyFal0spxznRc8m2sAVMhSAdZCwXNRKu2EExytRF4iH6oLcj3e3Qf_3WFszc53oRleGs5BMTFnKhsoPlIu-BgDlmYftrUNvWFgDvrMnz6jtRn1iV8RGWQ0</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Zhou, Wenzhe</creator><creator>Chen, Jianyong</creator><creator>Yang, Zhixiong</creator><creator>Liu, Junwei</creator><creator>Ouyang, Fangping</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190228</creationdate><title>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</title><author>Zhou, Wenzhe ; Chen, Jianyong ; Yang, Zhixiong ; Liu, Junwei ; Ouyang, Fangping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymmetry</topic><topic>Bilayers</topic><topic>Dipole moments</topic><topic>Electron spin</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>First principles</topic><topic>Interlayers</topic><topic>Multilayers</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Splitting</topic><topic>Stacking</topic><topic>Structural stability</topic><topic>Symmetry</topic><topic>Transition metal compounds</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wenzhe</creatorcontrib><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Liu, Junwei</creatorcontrib><creatorcontrib>Ouyang, Fangping</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wenzhe</au><au>Chen, Jianyong</au><au>Yang, Zhixiong</au><au>Liu, Junwei</au><au>Ouyang, Fangping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</atitle><jtitle>Physical review. B</jtitle><date>2019-02-28</date><risdate>2019</risdate><volume>99</volume><issue>7</issue><spage>075160</spage><pages>075160-</pages><artnum>075160</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.075160</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-02, Vol.99 (7), p.075160, Article 075160 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2207138175 |
source | American Physical Society Journals |
subjects | Asymmetry Bilayers Dipole moments Electron spin Electronic properties Electronic structure First principles Interlayers Multilayers Photovoltaic cells Solar cells Splitting Stacking Structural stability Symmetry Transition metal compounds Yttrium |
title | Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20and%20electronic%20structure%20of%20monolayer,%20bilayer,%20and%20multilayer%20Janus%20WSSe&rft.jtitle=Physical%20review.%20B&rft.au=Zhou,%20Wenzhe&rft.date=2019-02-28&rft.volume=99&rft.issue=7&rft.spage=075160&rft.pages=075160-&rft.artnum=075160&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.075160&rft_dat=%3Cproquest_cross%3E2207138175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207138175&rft_id=info:pmid/&rfr_iscdi=true |