Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe

Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-02, Vol.99 (7), p.075160, Article 075160
Hauptverfasser: Zhou, Wenzhe, Chen, Jianyong, Yang, Zhixiong, Liu, Junwei, Ouyang, Fangping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 075160
container_title Physical review. B
container_volume 99
creator Zhou, Wenzhe
Chen, Jianyong
Yang, Zhixiong
Liu, Junwei
Ouyang, Fangping
description Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY.
doi_str_mv 10.1103/PhysRevB.99.075160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207138175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207138175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOHQv4FXAWztPkjZZLnXoVAbKpngZ0vQUN9pmJq3Qt7ej06vzH_6Pc-Aj5IrBjDEQt29ffVzjz_1M6xmojEk4IROeSp1oLfXpf87gnExj3AHAwGgFekLWS_Q1tqGntikoVuja4Juto7ENnWu7gNSXtPaNr2yP4Ybm22M48HVXteNOX2zTRfq52eAlOSttFXF6nBfk4_HhffGUrF6Xz4u7VeKEhjYRIpOFSnMmtFUyFal0spxznRc8m2sAVMhSAdZCwXNRKu2EExytRF4iH6oLcj3e3Qf_3WFszc53oRleGs5BMTFnKhsoPlIu-BgDlmYftrUNvWFgDvrMnz6jtRn1iV8RGWQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207138175</pqid></control><display><type>article</type><title>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</title><source>American Physical Society Journals</source><creator>Zhou, Wenzhe ; Chen, Jianyong ; Yang, Zhixiong ; Liu, Junwei ; Ouyang, Fangping</creator><creatorcontrib>Zhou, Wenzhe ; Chen, Jianyong ; Yang, Zhixiong ; Liu, Junwei ; Ouyang, Fangping</creatorcontrib><description>Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.075160</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Asymmetry ; Bilayers ; Dipole moments ; Electron spin ; Electronic properties ; Electronic structure ; First principles ; Interlayers ; Multilayers ; Photovoltaic cells ; Solar cells ; Splitting ; Stacking ; Structural stability ; Symmetry ; Transition metal compounds ; Yttrium</subject><ispartof>Physical review. B, 2019-02, Vol.99 (7), p.075160, Article 075160</ispartof><rights>Copyright American Physical Society Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</citedby><cites>FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Wenzhe</creatorcontrib><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Liu, Junwei</creatorcontrib><creatorcontrib>Ouyang, Fangping</creatorcontrib><title>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</title><title>Physical review. B</title><description>Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY.</description><subject>Asymmetry</subject><subject>Bilayers</subject><subject>Dipole moments</subject><subject>Electron spin</subject><subject>Electronic properties</subject><subject>Electronic structure</subject><subject>First principles</subject><subject>Interlayers</subject><subject>Multilayers</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Splitting</subject><subject>Stacking</subject><subject>Structural stability</subject><subject>Symmetry</subject><subject>Transition metal compounds</subject><subject>Yttrium</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOHQv4FXAWztPkjZZLnXoVAbKpngZ0vQUN9pmJq3Qt7ej06vzH_6Pc-Aj5IrBjDEQt29ffVzjz_1M6xmojEk4IROeSp1oLfXpf87gnExj3AHAwGgFekLWS_Q1tqGntikoVuja4Juto7ENnWu7gNSXtPaNr2yP4Ybm22M48HVXteNOX2zTRfq52eAlOSttFXF6nBfk4_HhffGUrF6Xz4u7VeKEhjYRIpOFSnMmtFUyFal0spxznRc8m2sAVMhSAdZCwXNRKu2EExytRF4iH6oLcj3e3Qf_3WFszc53oRleGs5BMTFnKhsoPlIu-BgDlmYftrUNvWFgDvrMnz6jtRn1iV8RGWQ0</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Zhou, Wenzhe</creator><creator>Chen, Jianyong</creator><creator>Yang, Zhixiong</creator><creator>Liu, Junwei</creator><creator>Ouyang, Fangping</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190228</creationdate><title>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</title><author>Zhou, Wenzhe ; Chen, Jianyong ; Yang, Zhixiong ; Liu, Junwei ; Ouyang, Fangping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3356d74b139a764346c6f829bd258900e7e1430aa0d2b3f79c3c32ea6e2fe2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymmetry</topic><topic>Bilayers</topic><topic>Dipole moments</topic><topic>Electron spin</topic><topic>Electronic properties</topic><topic>Electronic structure</topic><topic>First principles</topic><topic>Interlayers</topic><topic>Multilayers</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Splitting</topic><topic>Stacking</topic><topic>Structural stability</topic><topic>Symmetry</topic><topic>Transition metal compounds</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wenzhe</creatorcontrib><creatorcontrib>Chen, Jianyong</creatorcontrib><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Liu, Junwei</creatorcontrib><creatorcontrib>Ouyang, Fangping</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wenzhe</au><au>Chen, Jianyong</au><au>Yang, Zhixiong</au><au>Liu, Junwei</au><au>Ouyang, Fangping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe</atitle><jtitle>Physical review. B</jtitle><date>2019-02-28</date><risdate>2019</risdate><volume>99</volume><issue>7</issue><spage>075160</spage><pages>075160-</pages><artnum>075160</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Newly synthesized Janus transition-metal dichalcogenides MXY ( M = Mo , W; X ≠ Y = S , Se, Te) possess intrinsic Rashba spin splitting and out-of-plane dipole moment due to the breaking of mirror symmetry. Taking WSSe as an example, we present a first-principles investigation of the structural stability and electronic properties of mono-, bi-, and multilayer MXY. Results show that S atoms contribute more than Se atoms in the valence-band maximum at the Γ point, which can be greatly affected by interlayer interactions. The high-symmetry AA′ stacking is still the most stable pattern, but there are various orders of chalcogen atomic layers in each stacking. The most preferred order of two adjacent layers is S-Se-Se-S, followed by Se-S-Se-S. The Se-S-Se-S–ordered WSSe bilayer is found to have significant layer splitting due to the net dipole moment, which has great potential for solar cells. Layer-dependent Rashba splittings exist in asymmetry-ordered WSSe bilayers, that can be tuned by changing the interlayer distance, originating from the regulation of interlayer electrostatic interaction. However, there is not layer splitting in a symmetrically stacked WSSe bilayer and opposite Rashba splitting appears in the two layers at a sufficiently large interlayer distance. The electronic structures and spin splittings can be easily modulated by controlling the chalcogen atomic-layer order, so that we can obtain the desired properties from mono-, bi-, and multilayer MXY.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.075160</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-02, Vol.99 (7), p.075160, Article 075160
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2207138175
source American Physical Society Journals
subjects Asymmetry
Bilayers
Dipole moments
Electron spin
Electronic properties
Electronic structure
First principles
Interlayers
Multilayers
Photovoltaic cells
Solar cells
Splitting
Stacking
Structural stability
Symmetry
Transition metal compounds
Yttrium
title Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20and%20electronic%20structure%20of%20monolayer,%20bilayer,%20and%20multilayer%20Janus%20WSSe&rft.jtitle=Physical%20review.%20B&rft.au=Zhou,%20Wenzhe&rft.date=2019-02-28&rft.volume=99&rft.issue=7&rft.spage=075160&rft.pages=075160-&rft.artnum=075160&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.075160&rft_dat=%3Cproquest_cross%3E2207138175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207138175&rft_id=info:pmid/&rfr_iscdi=true