Shape optimization of micro-acoustic devices including viscous and thermal losses

Since the late 1980s, numerical shape optimization has been applied successfully to improve the design and development of novel acoustic devices. Most often, viscous and thermal dissipation effects are neglected in the optimization process, as this is an acceptable assumption in e.g. room acoustics,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2019-05, Vol.447, p.120-136
Hauptverfasser: Andersen, Peter Risby, Cutanda Henríquez, Vicente, Aage, Niels
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 120
container_title Journal of sound and vibration
container_volume 447
creator Andersen, Peter Risby
Cutanda Henríquez, Vicente
Aage, Niels
description Since the late 1980s, numerical shape optimization has been applied successfully to improve the design and development of novel acoustic devices. Most often, viscous and thermal dissipation effects are neglected in the optimization process, as this is an acceptable assumption in e.g. room acoustics, etc. However, in many acoustic devices, ranging from hearing aids to metamaterials, dissipation can significantly influence the acoustic wave behaviour. In this paper, we propose a numerical acoustic shape optimization technique and we demonstrate it using two-dimensional quarter-wave and Helmholtz resonators including accurate modelling of viscous and thermal dissipation. By combining a dissipative boundary element method with shape optimization, the sound absorption capability of the resonators located at an impedance tube termination is maximized. Numerical experiments demonstrate the importance of viscothermal dissipation and its impact on the optimization outcome. The resulting resonator shapes, optimized using a lossy assumption, yield significantly better performance compared to their lossless counterpart, with near-perfect absorption at the desired optimization frequencies.
doi_str_mv 10.1016/j.jsv.2019.01.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207082903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X1930063X</els_id><sourcerecordid>2207082903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8e582a3130c22b4a7bf6f255a4b8fa4dd6c63c2aa9d91156d99dd44f680bfaa3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLuA69aTNM0kuJLBGwyIOAt3IU1SJ2Xa1KQt6NPbYVy7Oovzf-fyIXRNICdA-G2TN2nKKRCZA8mBrU7QgoAsM1FycYoWAJRmjMPHObpIqQEAyQq2QG_vO907HPrBt_5HDz50ONS49SaGTJswpsEbbN3kjUvYd2Y_Wt994smnQxPrzuJh52Kr93gfUnLpEp3Vep_c1V9dou3jw3b9nG1en17W95vMFFwMmXCloLogBRhKK6ZXVc1rWpaaVaLWzFpueGGo1tJKQkpupbSWsZoLqGqtiyW6OY7tY_gaXRpUE8bYzRsVpbACQSUUc4ocU_M7KUVXqz76VsdvRUAdxKlGzeLUQZwComZxM3N3ZNx8_eRdVMl41xlnfXRmUDb4f-hf15h3sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207082903</pqid></control><display><type>article</type><title>Shape optimization of micro-acoustic devices including viscous and thermal losses</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels</creator><creatorcontrib>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels</creatorcontrib><description>Since the late 1980s, numerical shape optimization has been applied successfully to improve the design and development of novel acoustic devices. Most often, viscous and thermal dissipation effects are neglected in the optimization process, as this is an acceptable assumption in e.g. room acoustics, etc. However, in many acoustic devices, ranging from hearing aids to metamaterials, dissipation can significantly influence the acoustic wave behaviour. In this paper, we propose a numerical acoustic shape optimization technique and we demonstrate it using two-dimensional quarter-wave and Helmholtz resonators including accurate modelling of viscous and thermal dissipation. By combining a dissipative boundary element method with shape optimization, the sound absorption capability of the resonators located at an impedance tube termination is maximized. Numerical experiments demonstrate the importance of viscothermal dissipation and its impact on the optimization outcome. The resulting resonator shapes, optimized using a lossy assumption, yield significantly better performance compared to their lossless counterpart, with near-perfect absorption at the desired optimization frequencies.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2019.01.047</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Absorption ; Acceptable noise levels ; Acoustics ; Boundary element method ; Energy dissipation ; Hearing aids ; Helmholtz resonators ; Mathematical models ; Metamaterials ; Numerical analysis ; Optimization ; Shape optimization ; Sound transmission ; Two dimensional models ; Vibration analysis ; Viscothermal losses</subject><ispartof>Journal of sound and vibration, 2019-05, Vol.447, p.120-136</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 12, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8e582a3130c22b4a7bf6f255a4b8fa4dd6c63c2aa9d91156d99dd44f680bfaa3</citedby><cites>FETCH-LOGICAL-c368t-8e582a3130c22b4a7bf6f255a4b8fa4dd6c63c2aa9d91156d99dd44f680bfaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2019.01.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Andersen, Peter Risby</creatorcontrib><creatorcontrib>Cutanda Henríquez, Vicente</creatorcontrib><creatorcontrib>Aage, Niels</creatorcontrib><title>Shape optimization of micro-acoustic devices including viscous and thermal losses</title><title>Journal of sound and vibration</title><description>Since the late 1980s, numerical shape optimization has been applied successfully to improve the design and development of novel acoustic devices. Most often, viscous and thermal dissipation effects are neglected in the optimization process, as this is an acceptable assumption in e.g. room acoustics, etc. However, in many acoustic devices, ranging from hearing aids to metamaterials, dissipation can significantly influence the acoustic wave behaviour. In this paper, we propose a numerical acoustic shape optimization technique and we demonstrate it using two-dimensional quarter-wave and Helmholtz resonators including accurate modelling of viscous and thermal dissipation. By combining a dissipative boundary element method with shape optimization, the sound absorption capability of the resonators located at an impedance tube termination is maximized. Numerical experiments demonstrate the importance of viscothermal dissipation and its impact on the optimization outcome. The resulting resonator shapes, optimized using a lossy assumption, yield significantly better performance compared to their lossless counterpart, with near-perfect absorption at the desired optimization frequencies.</description><subject>Absorption</subject><subject>Acceptable noise levels</subject><subject>Acoustics</subject><subject>Boundary element method</subject><subject>Energy dissipation</subject><subject>Hearing aids</subject><subject>Helmholtz resonators</subject><subject>Mathematical models</subject><subject>Metamaterials</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Shape optimization</subject><subject>Sound transmission</subject><subject>Two dimensional models</subject><subject>Vibration analysis</subject><subject>Viscothermal losses</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLuA69aTNM0kuJLBGwyIOAt3IU1SJ2Xa1KQt6NPbYVy7Oovzf-fyIXRNICdA-G2TN2nKKRCZA8mBrU7QgoAsM1FycYoWAJRmjMPHObpIqQEAyQq2QG_vO907HPrBt_5HDz50ONS49SaGTJswpsEbbN3kjUvYd2Y_Wt994smnQxPrzuJh52Kr93gfUnLpEp3Vep_c1V9dou3jw3b9nG1en17W95vMFFwMmXCloLogBRhKK6ZXVc1rWpaaVaLWzFpueGGo1tJKQkpupbSWsZoLqGqtiyW6OY7tY_gaXRpUE8bYzRsVpbACQSUUc4ocU_M7KUVXqz76VsdvRUAdxKlGzeLUQZwComZxM3N3ZNx8_eRdVMl41xlnfXRmUDb4f-hf15h3sQ</recordid><startdate>20190512</startdate><enddate>20190512</enddate><creator>Andersen, Peter Risby</creator><creator>Cutanda Henríquez, Vicente</creator><creator>Aage, Niels</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190512</creationdate><title>Shape optimization of micro-acoustic devices including viscous and thermal losses</title><author>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8e582a3130c22b4a7bf6f255a4b8fa4dd6c63c2aa9d91156d99dd44f680bfaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Acceptable noise levels</topic><topic>Acoustics</topic><topic>Boundary element method</topic><topic>Energy dissipation</topic><topic>Hearing aids</topic><topic>Helmholtz resonators</topic><topic>Mathematical models</topic><topic>Metamaterials</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Shape optimization</topic><topic>Sound transmission</topic><topic>Two dimensional models</topic><topic>Vibration analysis</topic><topic>Viscothermal losses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersen, Peter Risby</creatorcontrib><creatorcontrib>Cutanda Henríquez, Vicente</creatorcontrib><creatorcontrib>Aage, Niels</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersen, Peter Risby</au><au>Cutanda Henríquez, Vicente</au><au>Aage, Niels</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape optimization of micro-acoustic devices including viscous and thermal losses</atitle><jtitle>Journal of sound and vibration</jtitle><date>2019-05-12</date><risdate>2019</risdate><volume>447</volume><spage>120</spage><epage>136</epage><pages>120-136</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Since the late 1980s, numerical shape optimization has been applied successfully to improve the design and development of novel acoustic devices. Most often, viscous and thermal dissipation effects are neglected in the optimization process, as this is an acceptable assumption in e.g. room acoustics, etc. However, in many acoustic devices, ranging from hearing aids to metamaterials, dissipation can significantly influence the acoustic wave behaviour. In this paper, we propose a numerical acoustic shape optimization technique and we demonstrate it using two-dimensional quarter-wave and Helmholtz resonators including accurate modelling of viscous and thermal dissipation. By combining a dissipative boundary element method with shape optimization, the sound absorption capability of the resonators located at an impedance tube termination is maximized. Numerical experiments demonstrate the importance of viscothermal dissipation and its impact on the optimization outcome. The resulting resonator shapes, optimized using a lossy assumption, yield significantly better performance compared to their lossless counterpart, with near-perfect absorption at the desired optimization frequencies.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2019.01.047</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2019-05, Vol.447, p.120-136
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2207082903
source ScienceDirect Journals (5 years ago - present)
subjects Absorption
Acceptable noise levels
Acoustics
Boundary element method
Energy dissipation
Hearing aids
Helmholtz resonators
Mathematical models
Metamaterials
Numerical analysis
Optimization
Shape optimization
Sound transmission
Two dimensional models
Vibration analysis
Viscothermal losses
title Shape optimization of micro-acoustic devices including viscous and thermal losses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20optimization%20of%20micro-acoustic%20devices%20including%20viscous%20and%20thermal%20losses&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Andersen,%20Peter%20Risby&rft.date=2019-05-12&rft.volume=447&rft.spage=120&rft.epage=136&rft.pages=120-136&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2019.01.047&rft_dat=%3Cproquest_cross%3E2207082903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207082903&rft_id=info:pmid/&rft_els_id=S0022460X1930063X&rfr_iscdi=true