A Randomized Coordinate Descent Method with Volume Sampling
We analyze the coordinate descent method with a new coordinate selection strategy, called volume sampling. This strategy prescribes selecting subsets of variables of certain size proportionally to the determinants of principal submatrices of the matrix, that bounds the curvature of the objective fun...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rodomanov, Anton Kropotov, Dmitry |
description | We analyze the coordinate descent method with a new coordinate selection strategy, called volume sampling. This strategy prescribes selecting subsets of variables of certain size proportionally to the determinants of principal submatrices of the matrix, that bounds the curvature of the objective function. In the particular case, when the size of the subsets equals one, volume sampling coincides with the well-known strategy of sampling coordinates proportionally to their Lipschitz constants. For the coordinate descent with volume sampling, we establish the convergence rates both for convex and strongly convex problems. Our theoretical results show that, by increasing the size of the subsets, it is possible to accelerate the method up to the factor which depends on the spectral gap between the corresponding largest eigenvalues of the curvature matrix. Several numerical experiments confirm our theoretical conclusions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2206814269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206814269</sourcerecordid><originalsourceid>FETCH-proquest_journals_22068142693</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdlQISsxLyc_NrEpNUXDOzy9KycxLLElVcEktTk7NK1HwTS3JyE9RKM8syVAIy88pzU1VCE7MLcjJzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IyMDMwtDEyMzS2PiVAEAzhs23A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206814269</pqid></control><display><type>article</type><title>A Randomized Coordinate Descent Method with Volume Sampling</title><source>Free E- Journals</source><creator>Rodomanov, Anton ; Kropotov, Dmitry</creator><creatorcontrib>Rodomanov, Anton ; Kropotov, Dmitry</creatorcontrib><description>We analyze the coordinate descent method with a new coordinate selection strategy, called volume sampling. This strategy prescribes selecting subsets of variables of certain size proportionally to the determinants of principal submatrices of the matrix, that bounds the curvature of the objective function. In the particular case, when the size of the subsets equals one, volume sampling coincides with the well-known strategy of sampling coordinates proportionally to their Lipschitz constants. For the coordinate descent with volume sampling, we establish the convergence rates both for convex and strongly convex problems. Our theoretical results show that, by increasing the size of the subsets, it is possible to accelerate the method up to the factor which depends on the spectral gap between the corresponding largest eigenvalues of the curvature matrix. Several numerical experiments confirm our theoretical conclusions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convex analysis ; Curvature ; Descent ; Economic models ; Eigenvalues ; Iterative methods ; Mathematical analysis ; Matrix methods ; Randomization ; Sampling</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Rodomanov, Anton</creatorcontrib><creatorcontrib>Kropotov, Dmitry</creatorcontrib><title>A Randomized Coordinate Descent Method with Volume Sampling</title><title>arXiv.org</title><description>We analyze the coordinate descent method with a new coordinate selection strategy, called volume sampling. This strategy prescribes selecting subsets of variables of certain size proportionally to the determinants of principal submatrices of the matrix, that bounds the curvature of the objective function. In the particular case, when the size of the subsets equals one, volume sampling coincides with the well-known strategy of sampling coordinates proportionally to their Lipschitz constants. For the coordinate descent with volume sampling, we establish the convergence rates both for convex and strongly convex problems. Our theoretical results show that, by increasing the size of the subsets, it is possible to accelerate the method up to the factor which depends on the spectral gap between the corresponding largest eigenvalues of the curvature matrix. Several numerical experiments confirm our theoretical conclusions.</description><subject>Convex analysis</subject><subject>Curvature</subject><subject>Descent</subject><subject>Economic models</subject><subject>Eigenvalues</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Randomization</subject><subject>Sampling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdlQISsxLyc_NrEpNUXDOzy9KycxLLElVcEktTk7NK1HwTS3JyE9RKM8syVAIy88pzU1VCE7MLcjJzEvnYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IyMDMwtDEyMzS2PiVAEAzhs23A</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Rodomanov, Anton</creator><creator>Kropotov, Dmitry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200429</creationdate><title>A Randomized Coordinate Descent Method with Volume Sampling</title><author>Rodomanov, Anton ; Kropotov, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22068142693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convex analysis</topic><topic>Curvature</topic><topic>Descent</topic><topic>Economic models</topic><topic>Eigenvalues</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Randomization</topic><topic>Sampling</topic><toplevel>online_resources</toplevel><creatorcontrib>Rodomanov, Anton</creatorcontrib><creatorcontrib>Kropotov, Dmitry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodomanov, Anton</au><au>Kropotov, Dmitry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Randomized Coordinate Descent Method with Volume Sampling</atitle><jtitle>arXiv.org</jtitle><date>2020-04-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We analyze the coordinate descent method with a new coordinate selection strategy, called volume sampling. This strategy prescribes selecting subsets of variables of certain size proportionally to the determinants of principal submatrices of the matrix, that bounds the curvature of the objective function. In the particular case, when the size of the subsets equals one, volume sampling coincides with the well-known strategy of sampling coordinates proportionally to their Lipschitz constants. For the coordinate descent with volume sampling, we establish the convergence rates both for convex and strongly convex problems. Our theoretical results show that, by increasing the size of the subsets, it is possible to accelerate the method up to the factor which depends on the spectral gap between the corresponding largest eigenvalues of the curvature matrix. Several numerical experiments confirm our theoretical conclusions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2206814269 |
source | Free E- Journals |
subjects | Convex analysis Curvature Descent Economic models Eigenvalues Iterative methods Mathematical analysis Matrix methods Randomization Sampling |
title | A Randomized Coordinate Descent Method with Volume Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Randomized%20Coordinate%20Descent%20Method%20with%20Volume%20Sampling&rft.jtitle=arXiv.org&rft.au=Rodomanov,%20Anton&rft.date=2020-04-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2206814269%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206814269&rft_id=info:pmid/&rfr_iscdi=true |