A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies
Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-si...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2019-01, Vol.12 (4), p.1317-1325 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1325 |
---|---|
container_issue | 4 |
container_start_page | 1317 |
container_title | Energy & environmental science |
container_volume | 12 |
creator | Zhang, Guoxin Jia, Yin Zhang, Cong Xiong, Xuya Sun, Kai Chen, Ruida Chen, Wenxing Kuang, Yun Zheng, Lirong Tang, Haolin Liu, Wen Liu, Junfeng Sun, Xiaoming Lin, Wen-Feng Dai, Hongjie |
description | Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O
2
reduction reaction (ORR) and the CO
2
reduction reaction (CO
2
RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications. |
doi_str_mv | 10.1039/C9EE00162J |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206428818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206428818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</originalsourceid><addsrcrecordid>eNpFkMtKAzEYhYMoWKsbnyDgThhNMrfMspR6Q3Cj6yGXPzVlZjImqTA7X8CVb-iTmFLF1X_4-c45cBA6p-SKkry5XjarFSG0Yg8HaEbrssjKmlSHf7pq2DE6CWFDSMVI3czQ5wKvYQAvOuzdNgJ-twIb53vRWw1YuUHDEES0bsDR4dHDKDxgEV1vlei6CWsbRvABNO4hiu7742uw0buUmqQSXiYndKDST4kETCGGXQPe1a4nHEG9Dq5zawvhFB0Z0QU4-71z9HKzel7eZY9Pt_fLxWOm8obHzEjDaqkbIYjUhhaiyGtNGDOqkRzKQjJCJJW54aWoSsYloZpXlFQFAV7SIp-ji33u6N3bFkJsN27rh1TZMpYwxjnlibrcU8q7EDyYdvS2F35qKWl3c7f_c-c_kyt35w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206428818</pqid></control><display><type>article</type><title>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Guoxin ; Jia, Yin ; Zhang, Cong ; Xiong, Xuya ; Sun, Kai ; Chen, Ruida ; Chen, Wenxing ; Kuang, Yun ; Zheng, Lirong ; Tang, Haolin ; Liu, Wen ; Liu, Junfeng ; Sun, Xiaoming ; Lin, Wen-Feng ; Dai, Hongjie</creator><creatorcontrib>Zhang, Guoxin ; Jia, Yin ; Zhang, Cong ; Xiong, Xuya ; Sun, Kai ; Chen, Ruida ; Chen, Wenxing ; Kuang, Yun ; Zheng, Lirong ; Tang, Haolin ; Liu, Wen ; Liu, Junfeng ; Sun, Xiaoming ; Lin, Wen-Feng ; Dai, Hongjie</creatorcontrib><description>Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O
2
reduction reaction (ORR) and the CO
2
reduction reaction (CO
2
RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C9EE00162J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon ; Carbon dioxide ; Carbon nanotubes ; Carbonization ; Chemical reduction ; Condensates ; Condensation ; Electrocatalysts ; Electrolytes ; Energy technology ; Iron ; Manganese ; Mass production ; Metals ; Molybdenum ; Nickel ; Nitrogen ; Oxygen reduction reactions ; Pyrolysis ; Pyrolysis products ; Substrates ; Synthesis ; Zinc</subject><ispartof>Energy & environmental science, 2019-01, Vol.12 (4), p.1317-1325</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</citedby><cites>FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</cites><orcidid>0000-0001-8884-7799 ; 0000-0002-4256-2058 ; 0000-0001-7602-8526 ; 0000-0002-3831-6233 ; 0000-0003-1041-5376 ; 0000-0002-2124-8502 ; 0000-0003-0888-6769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Guoxin</creatorcontrib><creatorcontrib>Jia, Yin</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xiong, Xuya</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Chen, Ruida</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Tang, Haolin</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Lin, Wen-Feng</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><title>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</title><title>Energy & environmental science</title><description>Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O
2
reduction reaction (ORR) and the CO
2
reduction reaction (CO
2
RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbonization</subject><subject>Chemical reduction</subject><subject>Condensates</subject><subject>Condensation</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy technology</subject><subject>Iron</subject><subject>Manganese</subject><subject>Mass production</subject><subject>Metals</subject><subject>Molybdenum</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Pyrolysis products</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Zinc</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEYhYMoWKsbnyDgThhNMrfMspR6Q3Cj6yGXPzVlZjImqTA7X8CVb-iTmFLF1X_4-c45cBA6p-SKkry5XjarFSG0Yg8HaEbrssjKmlSHf7pq2DE6CWFDSMVI3czQ5wKvYQAvOuzdNgJ-twIb53vRWw1YuUHDEES0bsDR4dHDKDxgEV1vlei6CWsbRvABNO4hiu7742uw0buUmqQSXiYndKDST4kETCGGXQPe1a4nHEG9Dq5zawvhFB0Z0QU4-71z9HKzel7eZY9Pt_fLxWOm8obHzEjDaqkbIYjUhhaiyGtNGDOqkRzKQjJCJJW54aWoSsYloZpXlFQFAV7SIp-ji33u6N3bFkJsN27rh1TZMpYwxjnlibrcU8q7EDyYdvS2F35qKWl3c7f_c-c_kyt35w</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhang, Guoxin</creator><creator>Jia, Yin</creator><creator>Zhang, Cong</creator><creator>Xiong, Xuya</creator><creator>Sun, Kai</creator><creator>Chen, Ruida</creator><creator>Chen, Wenxing</creator><creator>Kuang, Yun</creator><creator>Zheng, Lirong</creator><creator>Tang, Haolin</creator><creator>Liu, Wen</creator><creator>Liu, Junfeng</creator><creator>Sun, Xiaoming</creator><creator>Lin, Wen-Feng</creator><creator>Dai, Hongjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8884-7799</orcidid><orcidid>https://orcid.org/0000-0002-4256-2058</orcidid><orcidid>https://orcid.org/0000-0001-7602-8526</orcidid><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid><orcidid>https://orcid.org/0000-0003-1041-5376</orcidid><orcidid>https://orcid.org/0000-0002-2124-8502</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid></search><sort><creationdate>20190101</creationdate><title>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</title><author>Zhang, Guoxin ; Jia, Yin ; Zhang, Cong ; Xiong, Xuya ; Sun, Kai ; Chen, Ruida ; Chen, Wenxing ; Kuang, Yun ; Zheng, Lirong ; Tang, Haolin ; Liu, Wen ; Liu, Junfeng ; Sun, Xiaoming ; Lin, Wen-Feng ; Dai, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbonization</topic><topic>Chemical reduction</topic><topic>Condensates</topic><topic>Condensation</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy technology</topic><topic>Iron</topic><topic>Manganese</topic><topic>Mass production</topic><topic>Metals</topic><topic>Molybdenum</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Pyrolysis products</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guoxin</creatorcontrib><creatorcontrib>Jia, Yin</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xiong, Xuya</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Chen, Ruida</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Tang, Haolin</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Lin, Wen-Feng</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guoxin</au><au>Jia, Yin</au><au>Zhang, Cong</au><au>Xiong, Xuya</au><au>Sun, Kai</au><au>Chen, Ruida</au><au>Chen, Wenxing</au><au>Kuang, Yun</au><au>Zheng, Lirong</au><au>Tang, Haolin</au><au>Liu, Wen</au><au>Liu, Junfeng</au><au>Sun, Xiaoming</au><au>Lin, Wen-Feng</au><au>Dai, Hongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</atitle><jtitle>Energy & environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>1317</spage><epage>1325</epage><pages>1317-1325</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O
2
reduction reaction (ORR) and the CO
2
reduction reaction (CO
2
RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9EE00162J</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8884-7799</orcidid><orcidid>https://orcid.org/0000-0002-4256-2058</orcidid><orcidid>https://orcid.org/0000-0001-7602-8526</orcidid><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid><orcidid>https://orcid.org/0000-0003-1041-5376</orcidid><orcidid>https://orcid.org/0000-0002-2124-8502</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2019-01, Vol.12 (4), p.1317-1325 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2206428818 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon Carbon dioxide Carbon nanotubes Carbonization Chemical reduction Condensates Condensation Electrocatalysts Electrolytes Energy technology Iron Manganese Mass production Metals Molybdenum Nickel Nitrogen Oxygen reduction reactions Pyrolysis Pyrolysis products Substrates Synthesis Zinc |
title | A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20route%20via%20formamide%20condensation%20to%20prepare%20atomically%20dispersed%20metal%E2%80%93nitrogen%E2%80%93carbon%20electrocatalysts%20for%20energy%20technologies&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhang,%20Guoxin&rft.date=2019-01-01&rft.volume=12&rft.issue=4&rft.spage=1317&rft.epage=1325&rft.pages=1317-1325&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C9EE00162J&rft_dat=%3Cproquest_cross%3E2206428818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206428818&rft_id=info:pmid/&rfr_iscdi=true |