A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies

Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2019-01, Vol.12 (4), p.1317-1325
Hauptverfasser: Zhang, Guoxin, Jia, Yin, Zhang, Cong, Xiong, Xuya, Sun, Kai, Chen, Ruida, Chen, Wenxing, Kuang, Yun, Zheng, Lirong, Tang, Haolin, Liu, Wen, Liu, Junfeng, Sun, Xiaoming, Lin, Wen-Feng, Dai, Hongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1325
container_issue 4
container_start_page 1317
container_title Energy & environmental science
container_volume 12
creator Zhang, Guoxin
Jia, Yin
Zhang, Cong
Xiong, Xuya
Sun, Kai
Chen, Ruida
Chen, Wenxing
Kuang, Yun
Zheng, Lirong
Tang, Haolin
Liu, Wen
Liu, Junfeng
Sun, Xiaoming
Lin, Wen-Feng
Dai, Hongjie
description Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O 2 reduction reaction (ORR) and the CO 2 reduction reaction (CO 2 RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.
doi_str_mv 10.1039/C9EE00162J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206428818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206428818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</originalsourceid><addsrcrecordid>eNpFkMtKAzEYhYMoWKsbnyDgThhNMrfMspR6Q3Cj6yGXPzVlZjImqTA7X8CVb-iTmFLF1X_4-c45cBA6p-SKkry5XjarFSG0Yg8HaEbrssjKmlSHf7pq2DE6CWFDSMVI3czQ5wKvYQAvOuzdNgJ-twIb53vRWw1YuUHDEES0bsDR4dHDKDxgEV1vlei6CWsbRvABNO4hiu7742uw0buUmqQSXiYndKDST4kETCGGXQPe1a4nHEG9Dq5zawvhFB0Z0QU4-71z9HKzel7eZY9Pt_fLxWOm8obHzEjDaqkbIYjUhhaiyGtNGDOqkRzKQjJCJJW54aWoSsYloZpXlFQFAV7SIp-ji33u6N3bFkJsN27rh1TZMpYwxjnlibrcU8q7EDyYdvS2F35qKWl3c7f_c-c_kyt35w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206428818</pqid></control><display><type>article</type><title>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Guoxin ; Jia, Yin ; Zhang, Cong ; Xiong, Xuya ; Sun, Kai ; Chen, Ruida ; Chen, Wenxing ; Kuang, Yun ; Zheng, Lirong ; Tang, Haolin ; Liu, Wen ; Liu, Junfeng ; Sun, Xiaoming ; Lin, Wen-Feng ; Dai, Hongjie</creator><creatorcontrib>Zhang, Guoxin ; Jia, Yin ; Zhang, Cong ; Xiong, Xuya ; Sun, Kai ; Chen, Ruida ; Chen, Wenxing ; Kuang, Yun ; Zheng, Lirong ; Tang, Haolin ; Liu, Wen ; Liu, Junfeng ; Sun, Xiaoming ; Lin, Wen-Feng ; Dai, Hongjie</creatorcontrib><description>Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O 2 reduction reaction (ORR) and the CO 2 reduction reaction (CO 2 RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C9EE00162J</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon ; Carbon dioxide ; Carbon nanotubes ; Carbonization ; Chemical reduction ; Condensates ; Condensation ; Electrocatalysts ; Electrolytes ; Energy technology ; Iron ; Manganese ; Mass production ; Metals ; Molybdenum ; Nickel ; Nitrogen ; Oxygen reduction reactions ; Pyrolysis ; Pyrolysis products ; Substrates ; Synthesis ; Zinc</subject><ispartof>Energy &amp; environmental science, 2019-01, Vol.12 (4), p.1317-1325</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</citedby><cites>FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</cites><orcidid>0000-0001-8884-7799 ; 0000-0002-4256-2058 ; 0000-0001-7602-8526 ; 0000-0002-3831-6233 ; 0000-0003-1041-5376 ; 0000-0002-2124-8502 ; 0000-0003-0888-6769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Guoxin</creatorcontrib><creatorcontrib>Jia, Yin</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xiong, Xuya</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Chen, Ruida</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Tang, Haolin</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Lin, Wen-Feng</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><title>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</title><title>Energy &amp; environmental science</title><description>Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O 2 reduction reaction (ORR) and the CO 2 reduction reaction (CO 2 RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbonization</subject><subject>Chemical reduction</subject><subject>Condensates</subject><subject>Condensation</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy technology</subject><subject>Iron</subject><subject>Manganese</subject><subject>Mass production</subject><subject>Metals</subject><subject>Molybdenum</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Pyrolysis products</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Zinc</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEYhYMoWKsbnyDgThhNMrfMspR6Q3Cj6yGXPzVlZjImqTA7X8CVb-iTmFLF1X_4-c45cBA6p-SKkry5XjarFSG0Yg8HaEbrssjKmlSHf7pq2DE6CWFDSMVI3czQ5wKvYQAvOuzdNgJ-twIb53vRWw1YuUHDEES0bsDR4dHDKDxgEV1vlei6CWsbRvABNO4hiu7742uw0buUmqQSXiYndKDST4kETCGGXQPe1a4nHEG9Dq5zawvhFB0Z0QU4-71z9HKzel7eZY9Pt_fLxWOm8obHzEjDaqkbIYjUhhaiyGtNGDOqkRzKQjJCJJW54aWoSsYloZpXlFQFAV7SIp-ji33u6N3bFkJsN27rh1TZMpYwxjnlibrcU8q7EDyYdvS2F35qKWl3c7f_c-c_kyt35w</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhang, Guoxin</creator><creator>Jia, Yin</creator><creator>Zhang, Cong</creator><creator>Xiong, Xuya</creator><creator>Sun, Kai</creator><creator>Chen, Ruida</creator><creator>Chen, Wenxing</creator><creator>Kuang, Yun</creator><creator>Zheng, Lirong</creator><creator>Tang, Haolin</creator><creator>Liu, Wen</creator><creator>Liu, Junfeng</creator><creator>Sun, Xiaoming</creator><creator>Lin, Wen-Feng</creator><creator>Dai, Hongjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8884-7799</orcidid><orcidid>https://orcid.org/0000-0002-4256-2058</orcidid><orcidid>https://orcid.org/0000-0001-7602-8526</orcidid><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid><orcidid>https://orcid.org/0000-0003-1041-5376</orcidid><orcidid>https://orcid.org/0000-0002-2124-8502</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid></search><sort><creationdate>20190101</creationdate><title>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</title><author>Zhang, Guoxin ; Jia, Yin ; Zhang, Cong ; Xiong, Xuya ; Sun, Kai ; Chen, Ruida ; Chen, Wenxing ; Kuang, Yun ; Zheng, Lirong ; Tang, Haolin ; Liu, Wen ; Liu, Junfeng ; Sun, Xiaoming ; Lin, Wen-Feng ; Dai, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-fbf27bd9aa0bdf14a437d022fc9b8e54b200b1b3f85a6528b01d8610640e85143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbonization</topic><topic>Chemical reduction</topic><topic>Condensates</topic><topic>Condensation</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy technology</topic><topic>Iron</topic><topic>Manganese</topic><topic>Mass production</topic><topic>Metals</topic><topic>Molybdenum</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Pyrolysis products</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guoxin</creatorcontrib><creatorcontrib>Jia, Yin</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Xiong, Xuya</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Chen, Ruida</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Kuang, Yun</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Tang, Haolin</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Liu, Junfeng</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Lin, Wen-Feng</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guoxin</au><au>Jia, Yin</au><au>Zhang, Cong</au><au>Xiong, Xuya</au><au>Sun, Kai</au><au>Chen, Ruida</au><au>Chen, Wenxing</au><au>Kuang, Yun</au><au>Zheng, Lirong</au><au>Tang, Haolin</au><au>Liu, Wen</au><au>Liu, Junfeng</au><au>Sun, Xiaoming</au><au>Lin, Wen-Feng</au><au>Dai, Hongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>1317</spage><epage>1325</epage><pages>1317-1325</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O 2 reduction reaction (ORR) and the CO 2 reduction reaction (CO 2 RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9EE00162J</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8884-7799</orcidid><orcidid>https://orcid.org/0000-0002-4256-2058</orcidid><orcidid>https://orcid.org/0000-0001-7602-8526</orcidid><orcidid>https://orcid.org/0000-0002-3831-6233</orcidid><orcidid>https://orcid.org/0000-0003-1041-5376</orcidid><orcidid>https://orcid.org/0000-0002-2124-8502</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2019-01, Vol.12 (4), p.1317-1325
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2206428818
source Royal Society Of Chemistry Journals 2008-
subjects Carbon
Carbon dioxide
Carbon nanotubes
Carbonization
Chemical reduction
Condensates
Condensation
Electrocatalysts
Electrolytes
Energy technology
Iron
Manganese
Mass production
Metals
Molybdenum
Nickel
Nitrogen
Oxygen reduction reactions
Pyrolysis
Pyrolysis products
Substrates
Synthesis
Zinc
title A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20route%20via%20formamide%20condensation%20to%20prepare%20atomically%20dispersed%20metal%E2%80%93nitrogen%E2%80%93carbon%20electrocatalysts%20for%20energy%20technologies&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhang,%20Guoxin&rft.date=2019-01-01&rft.volume=12&rft.issue=4&rft.spage=1317&rft.epage=1325&rft.pages=1317-1325&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C9EE00162J&rft_dat=%3Cproquest_cross%3E2206428818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206428818&rft_id=info:pmid/&rfr_iscdi=true