Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network
Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohex...
Gespeichert in:
Veröffentlicht in: | Quantitative biology 2019-03, Vol.7 (1), p.30-41 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | Quantitative biology |
container_volume | 7 |
creator | Yang, Wen Wang, Xia Li, Kenan Liu, Yuanru Liu, Ying Wang, Rui Li, Honglin |
description | Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology.
Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC.
Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model.
Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design. |
doi_str_mv | 10.1007/s40484-018-0163-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2206331219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206331219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4soOHQfwLeAz9UkTdPGNzc2Jwym4J5Dml63aNvMpGP025tZ0bfJcVyO_H-Xyz-Kbgi-Ixhn955hlrMYkzwkT2J2Fo0oFmnMuMjOf8-5uIzG3psCM4ZzRikeRcXLVrlGaVv2rWqM9sibZl-rztgW2QotVrMpKnqkkLbNbt99X6gaNbaE-ihQTumtKW1rNFLalKiBThW2Dm0L3cG6j-voolK1h_FPvYrW89nbdBEvV0_P08dlrFkqSMwUhxAFLtKSFCkRNKtIhgEYTco8SYXCFUnzpGKccgJM6zITivK8EBx0wpOr6HaYu3P2cw--k-9278KyXoav8iQhlIigIoNKO-u9g0runGmU6yXB8uimHNyUwU15dFOywDwMzMHU0P8PyNf1hE7mGJOUBJgOsA9cuwH3t9apF_MB2prNFhyUOwfey8rZtjPgTqFffSOabg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206331219</pqid></control><display><type>article</type><title>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</title><source>Wiley Online Library Open Access</source><creator>Yang, Wen ; Wang, Xia ; Li, Kenan ; Liu, Yuanru ; Liu, Ying ; Wang, Rui ; Li, Honglin</creator><creatorcontrib>Yang, Wen ; Wang, Xia ; Li, Kenan ; Liu, Yuanru ; Liu, Ying ; Wang, Rui ; Li, Honglin</creatorcontrib><description>Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology.
Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC.
Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model.
Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.</description><identifier>ISSN: 2095-4689</identifier><identifier>EISSN: 2095-4697</identifier><identifier>DOI: 10.1007/s40484-018-0163-4</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>anti-inflammation ; Arachidonate 5-lipoxygenase ; Arachidonic acid ; Arthritis ; Bioinformatics ; Biomedical and Life Sciences ; Calcimycin ; Collagen ; Computational Biology/Bioinformatics ; computational model ; Computer Appl. in Life Sciences ; Computer applications ; Drug delivery ; Drug development ; Drug dosages ; Life Sciences ; Lipoxygenase ; Mathematical and Computational Biology ; Metabolic flux ; metabolic network ; Metabolic networks ; Metabolism ; Metabolites ; natural product ; Natural products ; Pharmacodynamics ; Prostaglandin endoperoxide synthase ; Prostaglandins ; Research Article</subject><ispartof>Quantitative biology, 2019-03, Vol.7 (1), p.30-41</ispartof><rights>Copyright reserved, 2019, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature</rights><rights>Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>The Author(s) 2019.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</citedby><cites>FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40484-018-0163-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40484-018-0163-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,41464,42533,46027,46451,51294</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs40484-018-0163-4$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Li, Kenan</creatorcontrib><creatorcontrib>Liu, Yuanru</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><title>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</title><title>Quantitative biology</title><addtitle>Quant. Biol</addtitle><addtitle>Quant Biol</addtitle><description>Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology.
Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC.
Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model.
Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.</description><subject>anti-inflammation</subject><subject>Arachidonate 5-lipoxygenase</subject><subject>Arachidonic acid</subject><subject>Arthritis</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Calcimycin</subject><subject>Collagen</subject><subject>Computational Biology/Bioinformatics</subject><subject>computational model</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer applications</subject><subject>Drug delivery</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Life Sciences</subject><subject>Lipoxygenase</subject><subject>Mathematical and Computational Biology</subject><subject>Metabolic flux</subject><subject>metabolic network</subject><subject>Metabolic networks</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>natural product</subject><subject>Natural products</subject><subject>Pharmacodynamics</subject><subject>Prostaglandin endoperoxide synthase</subject><subject>Prostaglandins</subject><subject>Research Article</subject><issn>2095-4689</issn><issn>2095-4697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4soOHQfwLeAz9UkTdPGNzc2Jwym4J5Dml63aNvMpGP025tZ0bfJcVyO_H-Xyz-Kbgi-Ixhn955hlrMYkzwkT2J2Fo0oFmnMuMjOf8-5uIzG3psCM4ZzRikeRcXLVrlGaVv2rWqM9sibZl-rztgW2QotVrMpKnqkkLbNbt99X6gaNbaE-ihQTumtKW1rNFLalKiBThW2Dm0L3cG6j-voolK1h_FPvYrW89nbdBEvV0_P08dlrFkqSMwUhxAFLtKSFCkRNKtIhgEYTco8SYXCFUnzpGKccgJM6zITivK8EBx0wpOr6HaYu3P2cw--k-9278KyXoav8iQhlIigIoNKO-u9g0runGmU6yXB8uimHNyUwU15dFOywDwMzMHU0P8PyNf1hE7mGJOUBJgOsA9cuwH3t9apF_MB2prNFhyUOwfey8rZtjPgTqFffSOabg</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Yang, Wen</creator><creator>Wang, Xia</creator><creator>Li, Kenan</creator><creator>Liu, Yuanru</creator><creator>Liu, Ying</creator><creator>Wang, Rui</creator><creator>Li, Honglin</creator><general>Higher Education Press</general><general>Higher Education Press and Springer‐Verlag GmbH Germany, part of Springer Nature</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201903</creationdate><title>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</title><author>Yang, Wen ; Wang, Xia ; Li, Kenan ; Liu, Yuanru ; Liu, Ying ; Wang, Rui ; Li, Honglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anti-inflammation</topic><topic>Arachidonate 5-lipoxygenase</topic><topic>Arachidonic acid</topic><topic>Arthritis</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Calcimycin</topic><topic>Collagen</topic><topic>Computational Biology/Bioinformatics</topic><topic>computational model</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer applications</topic><topic>Drug delivery</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Life Sciences</topic><topic>Lipoxygenase</topic><topic>Mathematical and Computational Biology</topic><topic>Metabolic flux</topic><topic>metabolic network</topic><topic>Metabolic networks</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>natural product</topic><topic>Natural products</topic><topic>Pharmacodynamics</topic><topic>Prostaglandin endoperoxide synthase</topic><topic>Prostaglandins</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Li, Kenan</creatorcontrib><creatorcontrib>Liu, Yuanru</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Wen</au><au>Wang, Xia</au><au>Li, Kenan</au><au>Liu, Yuanru</au><au>Liu, Ying</au><au>Wang, Rui</au><au>Li, Honglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</atitle><jtitle>Quantitative biology</jtitle><stitle>Quant. Biol</stitle><stitle>Quant Biol</stitle><date>2019-03</date><risdate>2019</risdate><volume>7</volume><issue>1</issue><spage>30</spage><epage>41</epage><pages>30-41</pages><issn>2095-4689</issn><eissn>2095-4697</eissn><abstract>Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology.
Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC.
Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model.
Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s40484-018-0163-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2095-4689 |
ispartof | Quantitative biology, 2019-03, Vol.7 (1), p.30-41 |
issn | 2095-4689 2095-4697 |
language | eng |
recordid | cdi_proquest_journals_2206331219 |
source | Wiley Online Library Open Access |
subjects | anti-inflammation Arachidonate 5-lipoxygenase Arachidonic acid Arthritis Bioinformatics Biomedical and Life Sciences Calcimycin Collagen Computational Biology/Bioinformatics computational model Computer Appl. in Life Sciences Computer applications Drug delivery Drug development Drug dosages Life Sciences Lipoxygenase Mathematical and Computational Biology Metabolic flux metabolic network Metabolic networks Metabolism Metabolites natural product Natural products Pharmacodynamics Prostaglandin endoperoxide synthase Prostaglandins Research Article |
title | Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacodynamics%20simulation%20of%20HOEC%20by%20a%20computational%20model%20of%20arachidonic%20acid%20metabolic%20network&rft.jtitle=Quantitative%20biology&rft.au=Yang,%20Wen&rft.date=2019-03&rft.volume=7&rft.issue=1&rft.spage=30&rft.epage=41&rft.pages=30-41&rft.issn=2095-4689&rft.eissn=2095-4697&rft_id=info:doi/10.1007/s40484-018-0163-4&rft_dat=%3Cproquest_24P%3E2206331219%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206331219&rft_id=info:pmid/&rfr_iscdi=true |