Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network

Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative biology 2019-03, Vol.7 (1), p.30-41
Hauptverfasser: Yang, Wen, Wang, Xia, Li, Kenan, Liu, Yuanru, Liu, Ying, Wang, Rui, Li, Honglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 30
container_title Quantitative biology
container_volume 7
creator Yang, Wen
Wang, Xia
Li, Kenan
Liu, Yuanru
Liu, Ying
Wang, Rui
Li, Honglin
description Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.
doi_str_mv 10.1007/s40484-018-0163-4
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2206331219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206331219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4soOHQfwLeAz9UkTdPGNzc2Jwym4J5Dml63aNvMpGP025tZ0bfJcVyO_H-Xyz-Kbgi-Ixhn955hlrMYkzwkT2J2Fo0oFmnMuMjOf8-5uIzG3psCM4ZzRikeRcXLVrlGaVv2rWqM9sibZl-rztgW2QotVrMpKnqkkLbNbt99X6gaNbaE-ihQTumtKW1rNFLalKiBThW2Dm0L3cG6j-voolK1h_FPvYrW89nbdBEvV0_P08dlrFkqSMwUhxAFLtKSFCkRNKtIhgEYTco8SYXCFUnzpGKccgJM6zITivK8EBx0wpOr6HaYu3P2cw--k-9278KyXoav8iQhlIigIoNKO-u9g0runGmU6yXB8uimHNyUwU15dFOywDwMzMHU0P8PyNf1hE7mGJOUBJgOsA9cuwH3t9apF_MB2prNFhyUOwfey8rZtjPgTqFffSOabg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206331219</pqid></control><display><type>article</type><title>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</title><source>Wiley Online Library Open Access</source><creator>Yang, Wen ; Wang, Xia ; Li, Kenan ; Liu, Yuanru ; Liu, Ying ; Wang, Rui ; Li, Honglin</creator><creatorcontrib>Yang, Wen ; Wang, Xia ; Li, Kenan ; Liu, Yuanru ; Liu, Ying ; Wang, Rui ; Li, Honglin</creatorcontrib><description>Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.</description><identifier>ISSN: 2095-4689</identifier><identifier>EISSN: 2095-4697</identifier><identifier>DOI: 10.1007/s40484-018-0163-4</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>anti-inflammation ; Arachidonate 5-lipoxygenase ; Arachidonic acid ; Arthritis ; Bioinformatics ; Biomedical and Life Sciences ; Calcimycin ; Collagen ; Computational Biology/Bioinformatics ; computational model ; Computer Appl. in Life Sciences ; Computer applications ; Drug delivery ; Drug development ; Drug dosages ; Life Sciences ; Lipoxygenase ; Mathematical and Computational Biology ; Metabolic flux ; metabolic network ; Metabolic networks ; Metabolism ; Metabolites ; natural product ; Natural products ; Pharmacodynamics ; Prostaglandin endoperoxide synthase ; Prostaglandins ; Research Article</subject><ispartof>Quantitative biology, 2019-03, Vol.7 (1), p.30-41</ispartof><rights>Copyright reserved, 2019, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature</rights><rights>Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>The Author(s) 2019.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</citedby><cites>FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40484-018-0163-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40484-018-0163-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,41464,42533,46027,46451,51294</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs40484-018-0163-4$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Li, Kenan</creatorcontrib><creatorcontrib>Liu, Yuanru</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><title>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</title><title>Quantitative biology</title><addtitle>Quant. Biol</addtitle><addtitle>Quant Biol</addtitle><description>Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.</description><subject>anti-inflammation</subject><subject>Arachidonate 5-lipoxygenase</subject><subject>Arachidonic acid</subject><subject>Arthritis</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Calcimycin</subject><subject>Collagen</subject><subject>Computational Biology/Bioinformatics</subject><subject>computational model</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer applications</subject><subject>Drug delivery</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Life Sciences</subject><subject>Lipoxygenase</subject><subject>Mathematical and Computational Biology</subject><subject>Metabolic flux</subject><subject>metabolic network</subject><subject>Metabolic networks</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>natural product</subject><subject>Natural products</subject><subject>Pharmacodynamics</subject><subject>Prostaglandin endoperoxide synthase</subject><subject>Prostaglandins</subject><subject>Research Article</subject><issn>2095-4689</issn><issn>2095-4697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4soOHQfwLeAz9UkTdPGNzc2Jwym4J5Dml63aNvMpGP025tZ0bfJcVyO_H-Xyz-Kbgi-Ixhn955hlrMYkzwkT2J2Fo0oFmnMuMjOf8-5uIzG3psCM4ZzRikeRcXLVrlGaVv2rWqM9sibZl-rztgW2QotVrMpKnqkkLbNbt99X6gaNbaE-ihQTumtKW1rNFLalKiBThW2Dm0L3cG6j-voolK1h_FPvYrW89nbdBEvV0_P08dlrFkqSMwUhxAFLtKSFCkRNKtIhgEYTco8SYXCFUnzpGKccgJM6zITivK8EBx0wpOr6HaYu3P2cw--k-9278KyXoav8iQhlIigIoNKO-u9g0runGmU6yXB8uimHNyUwU15dFOywDwMzMHU0P8PyNf1hE7mGJOUBJgOsA9cuwH3t9apF_MB2prNFhyUOwfey8rZtjPgTqFffSOabg</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Yang, Wen</creator><creator>Wang, Xia</creator><creator>Li, Kenan</creator><creator>Liu, Yuanru</creator><creator>Liu, Ying</creator><creator>Wang, Rui</creator><creator>Li, Honglin</creator><general>Higher Education Press</general><general>Higher Education Press and Springer‐Verlag GmbH Germany, part of Springer Nature</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201903</creationdate><title>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</title><author>Yang, Wen ; Wang, Xia ; Li, Kenan ; Liu, Yuanru ; Liu, Ying ; Wang, Rui ; Li, Honglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-4a6e6e6b0b5d1b51927f170ee423d8359a0f1583f46261e4ccd79a268b96ec363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anti-inflammation</topic><topic>Arachidonate 5-lipoxygenase</topic><topic>Arachidonic acid</topic><topic>Arthritis</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Calcimycin</topic><topic>Collagen</topic><topic>Computational Biology/Bioinformatics</topic><topic>computational model</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer applications</topic><topic>Drug delivery</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Life Sciences</topic><topic>Lipoxygenase</topic><topic>Mathematical and Computational Biology</topic><topic>Metabolic flux</topic><topic>metabolic network</topic><topic>Metabolic networks</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>natural product</topic><topic>Natural products</topic><topic>Pharmacodynamics</topic><topic>Prostaglandin endoperoxide synthase</topic><topic>Prostaglandins</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Li, Kenan</creatorcontrib><creatorcontrib>Liu, Yuanru</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Wen</au><au>Wang, Xia</au><au>Li, Kenan</au><au>Liu, Yuanru</au><au>Liu, Ying</au><au>Wang, Rui</au><au>Li, Honglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network</atitle><jtitle>Quantitative biology</jtitle><stitle>Quant. Biol</stitle><stitle>Quant Biol</stitle><date>2019-03</date><risdate>2019</risdate><volume>7</volume><issue>1</issue><spage>30</spage><epage>41</epage><pages>30-41</pages><issn>2095-4689</issn><eissn>2095-4697</eissn><abstract>Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites' concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s40484-018-0163-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2095-4689
ispartof Quantitative biology, 2019-03, Vol.7 (1), p.30-41
issn 2095-4689
2095-4697
language eng
recordid cdi_proquest_journals_2206331219
source Wiley Online Library Open Access
subjects anti-inflammation
Arachidonate 5-lipoxygenase
Arachidonic acid
Arthritis
Bioinformatics
Biomedical and Life Sciences
Calcimycin
Collagen
Computational Biology/Bioinformatics
computational model
Computer Appl. in Life Sciences
Computer applications
Drug delivery
Drug development
Drug dosages
Life Sciences
Lipoxygenase
Mathematical and Computational Biology
Metabolic flux
metabolic network
Metabolic networks
Metabolism
Metabolites
natural product
Natural products
Pharmacodynamics
Prostaglandin endoperoxide synthase
Prostaglandins
Research Article
title Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacodynamics%20simulation%20of%20HOEC%20by%20a%20computational%20model%20of%20arachidonic%20acid%20metabolic%20network&rft.jtitle=Quantitative%20biology&rft.au=Yang,%20Wen&rft.date=2019-03&rft.volume=7&rft.issue=1&rft.spage=30&rft.epage=41&rft.pages=30-41&rft.issn=2095-4689&rft.eissn=2095-4697&rft_id=info:doi/10.1007/s40484-018-0163-4&rft_dat=%3Cproquest_24P%3E2206331219%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206331219&rft_id=info:pmid/&rfr_iscdi=true