Bending of edge-bonded dissimilar rectangular plates

This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meccanica (Milan) 2019-02, Vol.54 (3), p.565-572
Hauptverfasser: Joodaky, Iman, Joodaky, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 3
container_start_page 565
container_title Meccanica (Milan)
container_volume 54
creator Joodaky, Iman
Joodaky, Amin
description This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.
doi_str_mv 10.1007/s11012-019-00969-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206330024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206330024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEmHhB6giURvGz6xLWPGSVqKB2nLicZRVNgl2tuDv8RIkOqqZ4p55HEKuGdwygOouMQaMU2CGAhhtqD4hBVMVp0bL9SkpALiiWip1Ti5S2gFkDFRB5AMOvhvacgwl-hZpPQ4efem7lLp917tYRmxmN7SHYz_1bsZ0Sc6C6xNe_dYV-Xh6fN-80O3b8-vmfksbwcxMeahRSUTDlIOKgWuMbwxitVagsJINauC-hnxnEEF4ZEEpFE4JQC1dECtys8yd4vh5wDTb3XiIQ15pOQctRP5K5hRfUk0cU4oY7BS7vYtfloE92rGLHZvt2B87VmdILFDK4aHF-Df6H-obH_Zm7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206330024</pqid></control><display><type>article</type><title>Bending of edge-bonded dissimilar rectangular plates</title><source>SpringerNature Journals</source><creator>Joodaky, Iman ; Joodaky, Amin</creator><creatorcontrib>Joodaky, Iman ; Joodaky, Amin</creatorcontrib><description>This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-019-00969-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum ; Automotive Engineering ; Bonded joints ; Bonding strength ; Boundary conditions ; Civil Engineering ; Classical Mechanics ; Composite structures ; Deflection ; Exact solutions ; Finite element method ; Functionally gradient materials ; Kantorovich method ; Mathematical analysis ; Mechanical Engineering ; Physics ; Physics and Astronomy ; Rectangular plates ; Steel plates ; Stiffness</subject><ispartof>Meccanica (Milan), 2019-02, Vol.54 (3), p.565-572</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</citedby><cites>FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-019-00969-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-019-00969-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Joodaky, Iman</creatorcontrib><creatorcontrib>Joodaky, Amin</creatorcontrib><title>Bending of edge-bonded dissimilar rectangular plates</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.</description><subject>Aluminum</subject><subject>Automotive Engineering</subject><subject>Bonded joints</subject><subject>Bonding strength</subject><subject>Boundary conditions</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Composite structures</subject><subject>Deflection</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Functionally gradient materials</subject><subject>Kantorovich method</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rectangular plates</subject><subject>Steel plates</subject><subject>Stiffness</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEmHhB6giURvGz6xLWPGSVqKB2nLicZRVNgl2tuDv8RIkOqqZ4p55HEKuGdwygOouMQaMU2CGAhhtqD4hBVMVp0bL9SkpALiiWip1Ti5S2gFkDFRB5AMOvhvacgwl-hZpPQ4efem7lLp917tYRmxmN7SHYz_1bsZ0Sc6C6xNe_dYV-Xh6fN-80O3b8-vmfksbwcxMeahRSUTDlIOKgWuMbwxitVagsJINauC-hnxnEEF4ZEEpFE4JQC1dECtys8yd4vh5wDTb3XiIQ15pOQctRP5K5hRfUk0cU4oY7BS7vYtfloE92rGLHZvt2B87VmdILFDK4aHF-Df6H-obH_Zm7w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Joodaky, Iman</creator><creator>Joodaky, Amin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Bending of edge-bonded dissimilar rectangular plates</title><author>Joodaky, Iman ; Joodaky, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Automotive Engineering</topic><topic>Bonded joints</topic><topic>Bonding strength</topic><topic>Boundary conditions</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Composite structures</topic><topic>Deflection</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Functionally gradient materials</topic><topic>Kantorovich method</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rectangular plates</topic><topic>Steel plates</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joodaky, Iman</creatorcontrib><creatorcontrib>Joodaky, Amin</creatorcontrib><collection>CrossRef</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joodaky, Iman</au><au>Joodaky, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending of edge-bonded dissimilar rectangular plates</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>54</volume><issue>3</issue><spage>565</spage><epage>572</epage><pages>565-572</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-019-00969-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6455
ispartof Meccanica (Milan), 2019-02, Vol.54 (3), p.565-572
issn 0025-6455
1572-9648
language eng
recordid cdi_proquest_journals_2206330024
source SpringerNature Journals
subjects Aluminum
Automotive Engineering
Bonded joints
Bonding strength
Boundary conditions
Civil Engineering
Classical Mechanics
Composite structures
Deflection
Exact solutions
Finite element method
Functionally gradient materials
Kantorovich method
Mathematical analysis
Mechanical Engineering
Physics
Physics and Astronomy
Rectangular plates
Steel plates
Stiffness
title Bending of edge-bonded dissimilar rectangular plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending%20of%20edge-bonded%20dissimilar%20rectangular%20plates&rft.jtitle=Meccanica%20(Milan)&rft.au=Joodaky,%20Iman&rft.date=2019-02-01&rft.volume=54&rft.issue=3&rft.spage=565&rft.epage=572&rft.pages=565-572&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-019-00969-6&rft_dat=%3Cproquest_cross%3E2206330024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206330024&rft_id=info:pmid/&rfr_iscdi=true