Bending of edge-bonded dissimilar rectangular plates
This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stif...
Gespeichert in:
Veröffentlicht in: | Meccanica (Milan) 2019-02, Vol.54 (3), p.565-572 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 572 |
---|---|
container_issue | 3 |
container_start_page | 565 |
container_title | Meccanica (Milan) |
container_volume | 54 |
creator | Joodaky, Iman Joodaky, Amin |
description | This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses. |
doi_str_mv | 10.1007/s11012-019-00969-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206330024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206330024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEmHhB6giURvGz6xLWPGSVqKB2nLicZRVNgl2tuDv8RIkOqqZ4p55HEKuGdwygOouMQaMU2CGAhhtqD4hBVMVp0bL9SkpALiiWip1Ti5S2gFkDFRB5AMOvhvacgwl-hZpPQ4efem7lLp917tYRmxmN7SHYz_1bsZ0Sc6C6xNe_dYV-Xh6fN-80O3b8-vmfksbwcxMeahRSUTDlIOKgWuMbwxitVagsJINauC-hnxnEEF4ZEEpFE4JQC1dECtys8yd4vh5wDTb3XiIQ15pOQctRP5K5hRfUk0cU4oY7BS7vYtfloE92rGLHZvt2B87VmdILFDK4aHF-Df6H-obH_Zm7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206330024</pqid></control><display><type>article</type><title>Bending of edge-bonded dissimilar rectangular plates</title><source>SpringerNature Journals</source><creator>Joodaky, Iman ; Joodaky, Amin</creator><creatorcontrib>Joodaky, Iman ; Joodaky, Amin</creatorcontrib><description>This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-019-00969-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum ; Automotive Engineering ; Bonded joints ; Bonding strength ; Boundary conditions ; Civil Engineering ; Classical Mechanics ; Composite structures ; Deflection ; Exact solutions ; Finite element method ; Functionally gradient materials ; Kantorovich method ; Mathematical analysis ; Mechanical Engineering ; Physics ; Physics and Astronomy ; Rectangular plates ; Steel plates ; Stiffness</subject><ispartof>Meccanica (Milan), 2019-02, Vol.54 (3), p.565-572</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</citedby><cites>FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-019-00969-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-019-00969-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Joodaky, Iman</creatorcontrib><creatorcontrib>Joodaky, Amin</creatorcontrib><title>Bending of edge-bonded dissimilar rectangular plates</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.</description><subject>Aluminum</subject><subject>Automotive Engineering</subject><subject>Bonded joints</subject><subject>Bonding strength</subject><subject>Boundary conditions</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Composite structures</subject><subject>Deflection</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Functionally gradient materials</subject><subject>Kantorovich method</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rectangular plates</subject><subject>Steel plates</subject><subject>Stiffness</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEmHhB6giURvGz6xLWPGSVqKB2nLicZRVNgl2tuDv8RIkOqqZ4p55HEKuGdwygOouMQaMU2CGAhhtqD4hBVMVp0bL9SkpALiiWip1Ti5S2gFkDFRB5AMOvhvacgwl-hZpPQ4efem7lLp917tYRmxmN7SHYz_1bsZ0Sc6C6xNe_dYV-Xh6fN-80O3b8-vmfksbwcxMeahRSUTDlIOKgWuMbwxitVagsJINauC-hnxnEEF4ZEEpFE4JQC1dECtys8yd4vh5wDTb3XiIQ15pOQctRP5K5hRfUk0cU4oY7BS7vYtfloE92rGLHZvt2B87VmdILFDK4aHF-Df6H-obH_Zm7w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Joodaky, Iman</creator><creator>Joodaky, Amin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190201</creationdate><title>Bending of edge-bonded dissimilar rectangular plates</title><author>Joodaky, Iman ; Joodaky, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2fbe54ee915a0710ac9dc9ee78505e74ce602db0157f3f3de1f55e3a530e64af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Automotive Engineering</topic><topic>Bonded joints</topic><topic>Bonding strength</topic><topic>Boundary conditions</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Composite structures</topic><topic>Deflection</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Functionally gradient materials</topic><topic>Kantorovich method</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rectangular plates</topic><topic>Steel plates</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joodaky, Iman</creatorcontrib><creatorcontrib>Joodaky, Amin</creatorcontrib><collection>CrossRef</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joodaky, Iman</au><au>Joodaky, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending of edge-bonded dissimilar rectangular plates</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>54</volume><issue>3</issue><spage>565</spage><epage>572</epage><pages>565-572</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-019-00969-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-6455 |
ispartof | Meccanica (Milan), 2019-02, Vol.54 (3), p.565-572 |
issn | 0025-6455 1572-9648 |
language | eng |
recordid | cdi_proquest_journals_2206330024 |
source | SpringerNature Journals |
subjects | Aluminum Automotive Engineering Bonded joints Bonding strength Boundary conditions Civil Engineering Classical Mechanics Composite structures Deflection Exact solutions Finite element method Functionally gradient materials Kantorovich method Mathematical analysis Mechanical Engineering Physics Physics and Astronomy Rectangular plates Steel plates Stiffness |
title | Bending of edge-bonded dissimilar rectangular plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending%20of%20edge-bonded%20dissimilar%20rectangular%20plates&rft.jtitle=Meccanica%20(Milan)&rft.au=Joodaky,%20Iman&rft.date=2019-02-01&rft.volume=54&rft.issue=3&rft.spage=565&rft.epage=572&rft.pages=565-572&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-019-00969-6&rft_dat=%3Cproquest_cross%3E2206330024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206330024&rft_id=info:pmid/&rfr_iscdi=true |