Hydrodynamic Limit for the SSEP with a Slow Membrane

In this paper we consider a symmetric simple exclusion process on the d -dimensional discrete torus T N d with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region Λ on the continuous d -dimensional torus T d . In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2019-04, Vol.175 (2), p.233-268
Hauptverfasser: Franco, Tertuliano, Tavares, Mariana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 2
container_start_page 233
container_title Journal of statistical physics
container_volume 175
creator Franco, Tertuliano
Tavares, Mariana
description In this paper we consider a symmetric simple exclusion process on the d -dimensional discrete torus T N d with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region Λ on the continuous d -dimensional torus T d . In this setting, bonds crossing the membrane have jump rate α / N β and all other bonds have jump rate one, where α > 0 , β ∈ [ 0 , ∞ ] , and N ∈ N is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of β . For β ∈ [ 0 , 1 ) , the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For β ∈ ( 1 , ∞ ] , the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane ∂ Λ divides T d into two isolated regions Λ and Λ ∁ . And for the critical value β = 1 , the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law.
doi_str_mv 10.1007/s10955-019-02254-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2206309580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581912843</galeid><sourcerecordid>A581912843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AU8Bz6mTZLObHEupVqgoVM8hm03aLd1NzW4p--2NruBN5jAwvN_Mm4fQHYUpBSgeOgpKCAJUEWBMZGQ4QxMqCkZUTvk5mkAak6yg4hJddd0OAJRUYoKy5VDFUA2taWqLV3VT99iHiPutw-v14g2f6n6LDV7vwwm_uKaMpnU36MKbfeduf_s1-nhcvM-XZPX69DyfrYjlQvbEUmVUrgzwyjvqBZRMWllULAdpDBOGFWWeMymEMJZaLgU4wUpQvqx4kXxfo_tx7yGGz6Prer0Lx9imk5oxyHn6WUJSTUfVxuydrlsf-mhsqsqln0LrfJ3mMyGpokxmPAFsBGwMXRed14dYNyYOmoL-jlOPceoUp_6JUw8J4iPUJXG7cfHPyz_UF3yGdak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206309580</pqid></control><display><type>article</type><title>Hydrodynamic Limit for the SSEP with a Slow Membrane</title><source>SpringerLink Journals</source><creator>Franco, Tertuliano ; Tavares, Mariana</creator><creatorcontrib>Franco, Tertuliano ; Tavares, Mariana</creatorcontrib><description>In this paper we consider a symmetric simple exclusion process on the d -dimensional discrete torus T N d with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region Λ on the continuous d -dimensional torus T d . In this setting, bonds crossing the membrane have jump rate α / N β and all other bonds have jump rate one, where α &gt; 0 , β ∈ [ 0 , ∞ ] , and N ∈ N is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of β . For β ∈ [ 0 , 1 ) , the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For β ∈ ( 1 , ∞ ] , the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane ∂ Λ divides T d into two isolated regions Λ and Λ ∁ . And for the critical value β = 1 , the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-019-02254-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bonds (Securities) ; Boundary conditions ; Hydrodynamic equations ; Mathematical and Computational Physics ; Phase transitions ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Scaling ; Statistical Physics and Dynamical Systems ; Theoretical ; Thermodynamics ; Toruses</subject><ispartof>Journal of statistical physics, 2019-04, Vol.175 (2), p.233-268</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</citedby><cites>FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</cites><orcidid>0000-0002-1549-2875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-019-02254-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-019-02254-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Franco, Tertuliano</creatorcontrib><creatorcontrib>Tavares, Mariana</creatorcontrib><title>Hydrodynamic Limit for the SSEP with a Slow Membrane</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In this paper we consider a symmetric simple exclusion process on the d -dimensional discrete torus T N d with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region Λ on the continuous d -dimensional torus T d . In this setting, bonds crossing the membrane have jump rate α / N β and all other bonds have jump rate one, where α &gt; 0 , β ∈ [ 0 , ∞ ] , and N ∈ N is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of β . For β ∈ [ 0 , 1 ) , the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For β ∈ ( 1 , ∞ ] , the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane ∂ Λ divides T d into two isolated regions Λ and Λ ∁ . And for the critical value β = 1 , the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law.</description><subject>Bonds (Securities)</subject><subject>Boundary conditions</subject><subject>Hydrodynamic equations</subject><subject>Mathematical and Computational Physics</subject><subject>Phase transitions</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Scaling</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><subject>Toruses</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AU8Bz6mTZLObHEupVqgoVM8hm03aLd1NzW4p--2NruBN5jAwvN_Mm4fQHYUpBSgeOgpKCAJUEWBMZGQ4QxMqCkZUTvk5mkAak6yg4hJddd0OAJRUYoKy5VDFUA2taWqLV3VT99iHiPutw-v14g2f6n6LDV7vwwm_uKaMpnU36MKbfeduf_s1-nhcvM-XZPX69DyfrYjlQvbEUmVUrgzwyjvqBZRMWllULAdpDBOGFWWeMymEMJZaLgU4wUpQvqx4kXxfo_tx7yGGz6Prer0Lx9imk5oxyHn6WUJSTUfVxuydrlsf-mhsqsqln0LrfJ3mMyGpokxmPAFsBGwMXRed14dYNyYOmoL-jlOPceoUp_6JUw8J4iPUJXG7cfHPyz_UF3yGdak</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Franco, Tertuliano</creator><creator>Tavares, Mariana</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1549-2875</orcidid></search><sort><creationdate>20190401</creationdate><title>Hydrodynamic Limit for the SSEP with a Slow Membrane</title><author>Franco, Tertuliano ; Tavares, Mariana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonds (Securities)</topic><topic>Boundary conditions</topic><topic>Hydrodynamic equations</topic><topic>Mathematical and Computational Physics</topic><topic>Phase transitions</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Scaling</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Tertuliano</creatorcontrib><creatorcontrib>Tavares, Mariana</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Tertuliano</au><au>Tavares, Mariana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic Limit for the SSEP with a Slow Membrane</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>175</volume><issue>2</issue><spage>233</spage><epage>268</epage><pages>233-268</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In this paper we consider a symmetric simple exclusion process on the d -dimensional discrete torus T N d with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region Λ on the continuous d -dimensional torus T d . In this setting, bonds crossing the membrane have jump rate α / N β and all other bonds have jump rate one, where α &gt; 0 , β ∈ [ 0 , ∞ ] , and N ∈ N is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of β . For β ∈ [ 0 , 1 ) , the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For β ∈ ( 1 , ∞ ] , the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane ∂ Λ divides T d into two isolated regions Λ and Λ ∁ . And for the critical value β = 1 , the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-019-02254-y</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-1549-2875</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2019-04, Vol.175 (2), p.233-268
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2206309580
source SpringerLink Journals
subjects Bonds (Securities)
Boundary conditions
Hydrodynamic equations
Mathematical and Computational Physics
Phase transitions
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Scaling
Statistical Physics and Dynamical Systems
Theoretical
Thermodynamics
Toruses
title Hydrodynamic Limit for the SSEP with a Slow Membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20Limit%20for%20the%20SSEP%20with%20a%20Slow%20Membrane&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Franco,%20Tertuliano&rft.date=2019-04-01&rft.volume=175&rft.issue=2&rft.spage=233&rft.epage=268&rft.pages=233-268&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-019-02254-y&rft_dat=%3Cgale_proqu%3EA581912843%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206309580&rft_id=info:pmid/&rft_galeid=A581912843&rfr_iscdi=true