Hydrodynamic Limit for the SSEP with a Slow Membrane
In this paper we consider a symmetric simple exclusion process on the d -dimensional discrete torus T N d with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region Λ on the continuous d -dimensional torus T d . In t...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2019-04, Vol.175 (2), p.233-268 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Journal of statistical physics |
container_volume | 175 |
creator | Franco, Tertuliano Tavares, Mariana |
description | In this paper we consider a symmetric simple exclusion process on the
d
-dimensional discrete torus
T
N
d
with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region
Λ
on the continuous
d
-dimensional torus
T
d
. In this setting, bonds crossing the membrane have jump rate
α
/
N
β
and all other bonds have jump rate one, where
α
>
0
,
β
∈
[
0
,
∞
]
, and
N
∈
N
is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of
β
. For
β
∈
[
0
,
1
)
, the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For
β
∈
(
1
,
∞
]
, the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane
∂
Λ
divides
T
d
into two isolated regions
Λ
and
Λ
∁
. And for the critical value
β
=
1
, the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law. |
doi_str_mv | 10.1007/s10955-019-02254-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2206309580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A581912843</galeid><sourcerecordid>A581912843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AU8Bz6mTZLObHEupVqgoVM8hm03aLd1NzW4p--2NruBN5jAwvN_Mm4fQHYUpBSgeOgpKCAJUEWBMZGQ4QxMqCkZUTvk5mkAak6yg4hJddd0OAJRUYoKy5VDFUA2taWqLV3VT99iHiPutw-v14g2f6n6LDV7vwwm_uKaMpnU36MKbfeduf_s1-nhcvM-XZPX69DyfrYjlQvbEUmVUrgzwyjvqBZRMWllULAdpDBOGFWWeMymEMJZaLgU4wUpQvqx4kXxfo_tx7yGGz6Prer0Lx9imk5oxyHn6WUJSTUfVxuydrlsf-mhsqsqln0LrfJ3mMyGpokxmPAFsBGwMXRed14dYNyYOmoL-jlOPceoUp_6JUw8J4iPUJXG7cfHPyz_UF3yGdak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206309580</pqid></control><display><type>article</type><title>Hydrodynamic Limit for the SSEP with a Slow Membrane</title><source>SpringerLink Journals</source><creator>Franco, Tertuliano ; Tavares, Mariana</creator><creatorcontrib>Franco, Tertuliano ; Tavares, Mariana</creatorcontrib><description>In this paper we consider a symmetric simple exclusion process on the
d
-dimensional discrete torus
T
N
d
with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region
Λ
on the continuous
d
-dimensional torus
T
d
. In this setting, bonds crossing the membrane have jump rate
α
/
N
β
and all other bonds have jump rate one, where
α
>
0
,
β
∈
[
0
,
∞
]
, and
N
∈
N
is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of
β
. For
β
∈
[
0
,
1
)
, the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For
β
∈
(
1
,
∞
]
, the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane
∂
Λ
divides
T
d
into two isolated regions
Λ
and
Λ
∁
. And for the critical value
β
=
1
, the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-019-02254-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bonds (Securities) ; Boundary conditions ; Hydrodynamic equations ; Mathematical and Computational Physics ; Phase transitions ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Scaling ; Statistical Physics and Dynamical Systems ; Theoretical ; Thermodynamics ; Toruses</subject><ispartof>Journal of statistical physics, 2019-04, Vol.175 (2), p.233-268</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</citedby><cites>FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</cites><orcidid>0000-0002-1549-2875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-019-02254-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-019-02254-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Franco, Tertuliano</creatorcontrib><creatorcontrib>Tavares, Mariana</creatorcontrib><title>Hydrodynamic Limit for the SSEP with a Slow Membrane</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In this paper we consider a symmetric simple exclusion process on the
d
-dimensional discrete torus
T
N
d
with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region
Λ
on the continuous
d
-dimensional torus
T
d
. In this setting, bonds crossing the membrane have jump rate
α
/
N
β
and all other bonds have jump rate one, where
α
>
0
,
β
∈
[
0
,
∞
]
, and
N
∈
N
is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of
β
. For
β
∈
[
0
,
1
)
, the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For
β
∈
(
1
,
∞
]
, the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane
∂
Λ
divides
T
d
into two isolated regions
Λ
and
Λ
∁
. And for the critical value
β
=
1
, the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law.</description><subject>Bonds (Securities)</subject><subject>Boundary conditions</subject><subject>Hydrodynamic equations</subject><subject>Mathematical and Computational Physics</subject><subject>Phase transitions</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Scaling</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><subject>Toruses</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AU8Bz6mTZLObHEupVqgoVM8hm03aLd1NzW4p--2NruBN5jAwvN_Mm4fQHYUpBSgeOgpKCAJUEWBMZGQ4QxMqCkZUTvk5mkAak6yg4hJddd0OAJRUYoKy5VDFUA2taWqLV3VT99iHiPutw-v14g2f6n6LDV7vwwm_uKaMpnU36MKbfeduf_s1-nhcvM-XZPX69DyfrYjlQvbEUmVUrgzwyjvqBZRMWllULAdpDBOGFWWeMymEMJZaLgU4wUpQvqx4kXxfo_tx7yGGz6Prer0Lx9imk5oxyHn6WUJSTUfVxuydrlsf-mhsqsqln0LrfJ3mMyGpokxmPAFsBGwMXRed14dYNyYOmoL-jlOPceoUp_6JUw8J4iPUJXG7cfHPyz_UF3yGdak</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Franco, Tertuliano</creator><creator>Tavares, Mariana</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1549-2875</orcidid></search><sort><creationdate>20190401</creationdate><title>Hydrodynamic Limit for the SSEP with a Slow Membrane</title><author>Franco, Tertuliano ; Tavares, Mariana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c19a969a03dfe1f50b28c87d2608aa25a27b6628555ac1c3850e52b09fbd37613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonds (Securities)</topic><topic>Boundary conditions</topic><topic>Hydrodynamic equations</topic><topic>Mathematical and Computational Physics</topic><topic>Phase transitions</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Scaling</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Tertuliano</creatorcontrib><creatorcontrib>Tavares, Mariana</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Tertuliano</au><au>Tavares, Mariana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic Limit for the SSEP with a Slow Membrane</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>175</volume><issue>2</issue><spage>233</spage><epage>268</epage><pages>233-268</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In this paper we consider a symmetric simple exclusion process on the
d
-dimensional discrete torus
T
N
d
with a spatial non-homogeneity given by a slow membrane. The slow membrane is defined here as the boundary of a smooth simple connected region
Λ
on the continuous
d
-dimensional torus
T
d
. In this setting, bonds crossing the membrane have jump rate
α
/
N
β
and all other bonds have jump rate one, where
α
>
0
,
β
∈
[
0
,
∞
]
, and
N
∈
N
is the scaling parameter. In the diffusive scaling we prove that the hydrodynamic limit presents a dynamical phase transition, that is, it depends on the regime of
β
. For
β
∈
[
0
,
1
)
, the hydrodynamic equation is given by the usual heat equation on the continuous torus, meaning that the slow membrane has no effect in the limit. For
β
∈
(
1
,
∞
]
, the hydrodynamic equation is the heat equation with Neumann boundary conditions, meaning that the slow membrane
∂
Λ
divides
T
d
into two isolated regions
Λ
and
Λ
∁
. And for the critical value
β
=
1
, the hydrodynamic equation is the heat equation with certain Robin boundary conditions related to the Fick’s Law.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-019-02254-y</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-1549-2875</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2019-04, Vol.175 (2), p.233-268 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2206309580 |
source | SpringerLink Journals |
subjects | Bonds (Securities) Boundary conditions Hydrodynamic equations Mathematical and Computational Physics Phase transitions Physical Chemistry Physics Physics and Astronomy Quantum Physics Scaling Statistical Physics and Dynamical Systems Theoretical Thermodynamics Toruses |
title | Hydrodynamic Limit for the SSEP with a Slow Membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20Limit%20for%20the%20SSEP%20with%20a%20Slow%20Membrane&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Franco,%20Tertuliano&rft.date=2019-04-01&rft.volume=175&rft.issue=2&rft.spage=233&rft.epage=268&rft.pages=233-268&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-019-02254-y&rft_dat=%3Cgale_proqu%3EA581912843%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206309580&rft_id=info:pmid/&rft_galeid=A581912843&rfr_iscdi=true |