Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions

•Cross-sectional area of spray at the front end becomes larger as the chamber pressure increases from 0.5 bar to 3.5 bar.•Spray penetration and volume decrease significantly with an increase in chamber pressure from 0.5 bar to 3.5 bar.•Liquid-phase penetration decreases with an increase in fuel amou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2019-03, Vol.150, p.762-769
Hauptverfasser: Wu, Han, Wang, Lili, Wu, Yang, Sun, Baigang, Zhao, Zhenfeng, Liu, Fushui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 769
container_issue
container_start_page 762
container_title Applied thermal engineering
container_volume 150
creator Wu, Han
Wang, Lili
Wu, Yang
Sun, Baigang
Zhao, Zhenfeng
Liu, Fushui
description •Cross-sectional area of spray at the front end becomes larger as the chamber pressure increases from 0.5 bar to 3.5 bar.•Spray penetration and volume decrease significantly with an increase in chamber pressure from 0.5 bar to 3.5 bar.•Liquid-phase penetration decreases with an increase in fuel amount (controlled by fuel injection pulse width).•There is no significant difference in kerosene vapor penetration when the chamber temperature changes from 400 K to 500 K. The performance of kerosene spray from an air-assisted system was investigated in a constant volume chamber by backlit imaging and shadowgraph technologies over various chamber pressures, temperatures, and fuel amount. The results show that the penetration decreases with the increase in the chamber pressures from 0.5 bar to 3.5 bar due to the reduction in the differential pressure between the air/fuel interface and ambience and the rise in the resistance to penetration as well. Liquid-phase penetration increases with an increase in temperature from 400 K to 500 K both at 1.0 bar and 3.0 bar for decreasing density of ambient gas. When ambient temperature was increased at 1.0 bar, there was no significant change in the vapor penetration. Therefore, increasing ambient temperature by internal EGR cannot reduce wall impingement when GDI engines fueled with kerosene. Furthermore, liquid-phase penetration decreases with the increase in fuel amount, while at the front end of spray the cross-sectional area increases since the spray is increasingly disturbed by the ambient gas.
doi_str_mv 10.1016/j.applthermaleng.2019.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206266496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118359957</els_id><sourcerecordid>2206266496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7788506746147253d976b314a2746e669ba180ce614ed58ca34b2d0e858f5e023</originalsourceid><addsrcrecordid>eNqNUE1LxDAQLaLg538I6LVrkqZpCl7Ej1UQPKjnkE2nbmo3qUm7sEf_ubOuF2_CkBlm3nuTeVl2weiMUSYvu5kZhn5cQlyZHvz7jFNWzyjDEHvZEVNVkZeSyn2si7LORcHYYXacUkcp46oSR9nXyxDNhgwQ24Aq3gIJLTEu5iYll0ZoyAfEkMADcb4DO7rgsSKG2ODTaPxI1qGfVkDs0qwWEMnkG3zXJrowJYTmdtO7n9789pHgNx1qIblxW610mh20pk9w9ptPsrf7u9ebh_zpef54c_2U26JUY15VSpVUVkIyUfGyaOpKLgomDMcWSFkvDFPUAo6hKZU1hVjwhoIqVVsC5cVJdr7THWL4nCCNugtT9LhSc04ll1LUElFXO5TFo1OEVg_RrUzcaEb11nTd6b-m663pmjIMgfT7HR3wkrWDqJN1gK42LqJ3ugnuf0LfCJWVKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206266496</pqid></control><display><type>article</type><title>Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wu, Han ; Wang, Lili ; Wu, Yang ; Sun, Baigang ; Zhao, Zhenfeng ; Liu, Fushui</creator><creatorcontrib>Wu, Han ; Wang, Lili ; Wu, Yang ; Sun, Baigang ; Zhao, Zhenfeng ; Liu, Fushui</creatorcontrib><description>•Cross-sectional area of spray at the front end becomes larger as the chamber pressure increases from 0.5 bar to 3.5 bar.•Spray penetration and volume decrease significantly with an increase in chamber pressure from 0.5 bar to 3.5 bar.•Liquid-phase penetration decreases with an increase in fuel amount (controlled by fuel injection pulse width).•There is no significant difference in kerosene vapor penetration when the chamber temperature changes from 400 K to 500 K. The performance of kerosene spray from an air-assisted system was investigated in a constant volume chamber by backlit imaging and shadowgraph technologies over various chamber pressures, temperatures, and fuel amount. The results show that the penetration decreases with the increase in the chamber pressures from 0.5 bar to 3.5 bar due to the reduction in the differential pressure between the air/fuel interface and ambience and the rise in the resistance to penetration as well. Liquid-phase penetration increases with an increase in temperature from 400 K to 500 K both at 1.0 bar and 3.0 bar for decreasing density of ambient gas. When ambient temperature was increased at 1.0 bar, there was no significant change in the vapor penetration. Therefore, increasing ambient temperature by internal EGR cannot reduce wall impingement when GDI engines fueled with kerosene. Furthermore, liquid-phase penetration decreases with the increase in fuel amount, while at the front end of spray the cross-sectional area increases since the spray is increasingly disturbed by the ambient gas.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.01.014</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air-assisted injection ; Ambience ; Ambient temperature ; Differential pressure ; Engine cylinders ; Engines ; Fuels ; Impingement ; In-cylinder condition ; Kerosene ; Liquid phases ; Penetration ; Penetration resistance ; Pressure ; Spray performance ; Temperature</subject><ispartof>Applied thermal engineering, 2019-03, Vol.150, p.762-769</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-7788506746147253d976b314a2746e669ba180ce614ed58ca34b2d0e858f5e023</citedby><cites>FETCH-LOGICAL-c358t-7788506746147253d976b314a2746e669ba180ce614ed58ca34b2d0e858f5e023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2019.01.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wu, Han</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Sun, Baigang</creatorcontrib><creatorcontrib>Zhao, Zhenfeng</creatorcontrib><creatorcontrib>Liu, Fushui</creatorcontrib><title>Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions</title><title>Applied thermal engineering</title><description>•Cross-sectional area of spray at the front end becomes larger as the chamber pressure increases from 0.5 bar to 3.5 bar.•Spray penetration and volume decrease significantly with an increase in chamber pressure from 0.5 bar to 3.5 bar.•Liquid-phase penetration decreases with an increase in fuel amount (controlled by fuel injection pulse width).•There is no significant difference in kerosene vapor penetration when the chamber temperature changes from 400 K to 500 K. The performance of kerosene spray from an air-assisted system was investigated in a constant volume chamber by backlit imaging and shadowgraph technologies over various chamber pressures, temperatures, and fuel amount. The results show that the penetration decreases with the increase in the chamber pressures from 0.5 bar to 3.5 bar due to the reduction in the differential pressure between the air/fuel interface and ambience and the rise in the resistance to penetration as well. Liquid-phase penetration increases with an increase in temperature from 400 K to 500 K both at 1.0 bar and 3.0 bar for decreasing density of ambient gas. When ambient temperature was increased at 1.0 bar, there was no significant change in the vapor penetration. Therefore, increasing ambient temperature by internal EGR cannot reduce wall impingement when GDI engines fueled with kerosene. Furthermore, liquid-phase penetration decreases with the increase in fuel amount, while at the front end of spray the cross-sectional area increases since the spray is increasingly disturbed by the ambient gas.</description><subject>Air-assisted injection</subject><subject>Ambience</subject><subject>Ambient temperature</subject><subject>Differential pressure</subject><subject>Engine cylinders</subject><subject>Engines</subject><subject>Fuels</subject><subject>Impingement</subject><subject>In-cylinder condition</subject><subject>Kerosene</subject><subject>Liquid phases</subject><subject>Penetration</subject><subject>Penetration resistance</subject><subject>Pressure</subject><subject>Spray performance</subject><subject>Temperature</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAQLaLg538I6LVrkqZpCl7Ej1UQPKjnkE2nbmo3qUm7sEf_ubOuF2_CkBlm3nuTeVl2weiMUSYvu5kZhn5cQlyZHvz7jFNWzyjDEHvZEVNVkZeSyn2si7LORcHYYXacUkcp46oSR9nXyxDNhgwQ24Aq3gIJLTEu5iYll0ZoyAfEkMADcb4DO7rgsSKG2ODTaPxI1qGfVkDs0qwWEMnkG3zXJrowJYTmdtO7n9789pHgNx1qIblxW610mh20pk9w9ptPsrf7u9ebh_zpef54c_2U26JUY15VSpVUVkIyUfGyaOpKLgomDMcWSFkvDFPUAo6hKZU1hVjwhoIqVVsC5cVJdr7THWL4nCCNugtT9LhSc04ll1LUElFXO5TFo1OEVg_RrUzcaEb11nTd6b-m663pmjIMgfT7HR3wkrWDqJN1gK42LqJ3ugnuf0LfCJWVKA</recordid><startdate>20190305</startdate><enddate>20190305</enddate><creator>Wu, Han</creator><creator>Wang, Lili</creator><creator>Wu, Yang</creator><creator>Sun, Baigang</creator><creator>Zhao, Zhenfeng</creator><creator>Liu, Fushui</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190305</creationdate><title>Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions</title><author>Wu, Han ; Wang, Lili ; Wu, Yang ; Sun, Baigang ; Zhao, Zhenfeng ; Liu, Fushui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7788506746147253d976b314a2746e669ba180ce614ed58ca34b2d0e858f5e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air-assisted injection</topic><topic>Ambience</topic><topic>Ambient temperature</topic><topic>Differential pressure</topic><topic>Engine cylinders</topic><topic>Engines</topic><topic>Fuels</topic><topic>Impingement</topic><topic>In-cylinder condition</topic><topic>Kerosene</topic><topic>Liquid phases</topic><topic>Penetration</topic><topic>Penetration resistance</topic><topic>Pressure</topic><topic>Spray performance</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Han</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Sun, Baigang</creatorcontrib><creatorcontrib>Zhao, Zhenfeng</creatorcontrib><creatorcontrib>Liu, Fushui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Han</au><au>Wang, Lili</au><au>Wu, Yang</au><au>Sun, Baigang</au><au>Zhao, Zhenfeng</au><au>Liu, Fushui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-03-05</date><risdate>2019</risdate><volume>150</volume><spage>762</spage><epage>769</epage><pages>762-769</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Cross-sectional area of spray at the front end becomes larger as the chamber pressure increases from 0.5 bar to 3.5 bar.•Spray penetration and volume decrease significantly with an increase in chamber pressure from 0.5 bar to 3.5 bar.•Liquid-phase penetration decreases with an increase in fuel amount (controlled by fuel injection pulse width).•There is no significant difference in kerosene vapor penetration when the chamber temperature changes from 400 K to 500 K. The performance of kerosene spray from an air-assisted system was investigated in a constant volume chamber by backlit imaging and shadowgraph technologies over various chamber pressures, temperatures, and fuel amount. The results show that the penetration decreases with the increase in the chamber pressures from 0.5 bar to 3.5 bar due to the reduction in the differential pressure between the air/fuel interface and ambience and the rise in the resistance to penetration as well. Liquid-phase penetration increases with an increase in temperature from 400 K to 500 K both at 1.0 bar and 3.0 bar for decreasing density of ambient gas. When ambient temperature was increased at 1.0 bar, there was no significant change in the vapor penetration. Therefore, increasing ambient temperature by internal EGR cannot reduce wall impingement when GDI engines fueled with kerosene. Furthermore, liquid-phase penetration decreases with the increase in fuel amount, while at the front end of spray the cross-sectional area increases since the spray is increasingly disturbed by the ambient gas.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.01.014</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-03, Vol.150, p.762-769
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2206266496
source Access via ScienceDirect (Elsevier)
subjects Air-assisted injection
Ambience
Ambient temperature
Differential pressure
Engine cylinders
Engines
Fuels
Impingement
In-cylinder condition
Kerosene
Liquid phases
Penetration
Penetration resistance
Pressure
Spray performance
Temperature
title Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spray%20performance%20of%20air-assisted%20kerosene%20injection%20in%20a%20constant%20volume%20chamber%20under%20various%20in-cylinder%20GDI%20engine%20conditions&rft.jtitle=Applied%20thermal%20engineering&rft.au=Wu,%20Han&rft.date=2019-03-05&rft.volume=150&rft.spage=762&rft.epage=769&rft.pages=762-769&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.01.014&rft_dat=%3Cproquest_cross%3E2206266496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206266496&rft_id=info:pmid/&rft_els_id=S1359431118359957&rfr_iscdi=true