Image formation modeling and analysis of near‐eye light field displays

Near‐eye light field displays based on integral imaging through a microlens array provide attractive features like ultra‐compact volume and freedom of the vergence‐accommodation conflict to head‐mounted displays with virtual or augmented reality functions. To enable optimal design and analysis of su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Society for Information Display 2019-04, Vol.27 (4), p.238-250
Hauptverfasser: Qin, Zong, Chou, Ping‐Yen, Wu, Jui‐Yi, Chen, Yu‐Ting, Huang, Cheng‐Ting, Balram, Nikhil, Huang, Yi‐Pai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 4
container_start_page 238
container_title Journal of the Society for Information Display
container_volume 27
creator Qin, Zong
Chou, Ping‐Yen
Wu, Jui‐Yi
Chen, Yu‐Ting
Huang, Cheng‐Ting
Balram, Nikhil
Huang, Yi‐Pai
description Near‐eye light field displays based on integral imaging through a microlens array provide attractive features like ultra‐compact volume and freedom of the vergence‐accommodation conflict to head‐mounted displays with virtual or augmented reality functions. To enable optimal design and analysis of such systems, it is desirable to have a physical model that incorporates all factors that affect the image formation, including diffraction, aberration, defocusing, and pixel size. Therefore, in this study, using the fundamental Huygens‐Fresnel principle and the Arizona eye model with adjustable accommodation, we develop an image formation model that can numerically calculate the retinal light field image with near‐perfect accuracy, and experimentally verify it with a prototype system. Next, based on this model, the visual resolution is analyzed for different field of views (FOVs). As a result, a rapid resolution decay with respect to FOV caused by off‐axis aberration is demonstrated. Finally, resolution variations as a function of image depth are analyzed based on systems with different central depth planes. Significantly, the resolution decay is revealed to plateau when the image depth is large enough, which is different from real‐image type light field displays. An image formation model with near‐perfect accuracy is developed for near‐eye light field displays by incorporating all factors affecting the image quality: diffraction, aberration, defocusing, pixel size, etc. Model‐based optimizations are performed to enhance the resolution from 6.9 to 15.4 PPD. The influences of field of view and image depth are quantitatively analyzed.
doi_str_mv 10.1002/jsid.771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205859937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205859937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-92cdbc1ecd2b13157dd9b3350332ec4200890ef568860aca6259d1081e6b8c783</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYq-AgBN26m5tLcllIvrRRcqOuQSTI1JTOpSYvMzkfwGX0Sp9Sti8M5i4-fww_AJUYTjBC5WZfgJkLgIzDCisqKciaOhxsJXCFFyCk4K2U9SM6mfATmi9asPGxSbs02pA62yfkYuhU0nRvGxL6EAlMDO2_yz9e37z2MYfW-hU3w0UEXyiaavpyDk8bE4i_-9hi8Pdy_zubV8vlxMbtdVpYyhStFrKst9taRGlPMhHOqppQhSom3U4KQVMg3jEvJkbGGE6YcRhJ7XksrJB2Dq0PuJqePnS9bvU67PPxZNCGISaYUFYO6PiibUynZN3qTQ2tyrzHS-570vic99DTQ6kA_Q_T9v04_vSzu9v4X2v9p0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205859937</pqid></control><display><type>article</type><title>Image formation modeling and analysis of near‐eye light field displays</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qin, Zong ; Chou, Ping‐Yen ; Wu, Jui‐Yi ; Chen, Yu‐Ting ; Huang, Cheng‐Ting ; Balram, Nikhil ; Huang, Yi‐Pai</creator><creatorcontrib>Qin, Zong ; Chou, Ping‐Yen ; Wu, Jui‐Yi ; Chen, Yu‐Ting ; Huang, Cheng‐Ting ; Balram, Nikhil ; Huang, Yi‐Pai</creatorcontrib><description>Near‐eye light field displays based on integral imaging through a microlens array provide attractive features like ultra‐compact volume and freedom of the vergence‐accommodation conflict to head‐mounted displays with virtual or augmented reality functions. To enable optimal design and analysis of such systems, it is desirable to have a physical model that incorporates all factors that affect the image formation, including diffraction, aberration, defocusing, and pixel size. Therefore, in this study, using the fundamental Huygens‐Fresnel principle and the Arizona eye model with adjustable accommodation, we develop an image formation model that can numerically calculate the retinal light field image with near‐perfect accuracy, and experimentally verify it with a prototype system. Next, based on this model, the visual resolution is analyzed for different field of views (FOVs). As a result, a rapid resolution decay with respect to FOV caused by off‐axis aberration is demonstrated. Finally, resolution variations as a function of image depth are analyzed based on systems with different central depth planes. Significantly, the resolution decay is revealed to plateau when the image depth is large enough, which is different from real‐image type light field displays. An image formation model with near‐perfect accuracy is developed for near‐eye light field displays by incorporating all factors affecting the image quality: diffraction, aberration, defocusing, pixel size, etc. Model‐based optimizations are performed to enhance the resolution from 6.9 to 15.4 PPD. The influences of field of view and image depth are quantitatively analyzed.</description><identifier>ISSN: 1071-0922</identifier><identifier>EISSN: 1938-3657</identifier><identifier>DOI: 10.1002/jsid.771</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>3D display ; Aberration ; Accommodation ; Augmented reality ; Decay ; Defocusing ; eye model ; field of view ; Helmet mounted displays ; integral imaging ; light field display ; Mathematical analysis ; Mathematical models ; Systems analysis ; Virtual reality</subject><ispartof>Journal of the Society for Information Display, 2019-04, Vol.27 (4), p.238-250</ispartof><rights>2019 Society for Information Display</rights><rights>2019 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-92cdbc1ecd2b13157dd9b3350332ec4200890ef568860aca6259d1081e6b8c783</citedby><cites>FETCH-LOGICAL-c3591-92cdbc1ecd2b13157dd9b3350332ec4200890ef568860aca6259d1081e6b8c783</cites><orcidid>0000-0002-7370-4784 ; 0000-0002-6540-6429 ; 0000-0001-5689-2085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsid.771$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsid.771$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Qin, Zong</creatorcontrib><creatorcontrib>Chou, Ping‐Yen</creatorcontrib><creatorcontrib>Wu, Jui‐Yi</creatorcontrib><creatorcontrib>Chen, Yu‐Ting</creatorcontrib><creatorcontrib>Huang, Cheng‐Ting</creatorcontrib><creatorcontrib>Balram, Nikhil</creatorcontrib><creatorcontrib>Huang, Yi‐Pai</creatorcontrib><title>Image formation modeling and analysis of near‐eye light field displays</title><title>Journal of the Society for Information Display</title><description>Near‐eye light field displays based on integral imaging through a microlens array provide attractive features like ultra‐compact volume and freedom of the vergence‐accommodation conflict to head‐mounted displays with virtual or augmented reality functions. To enable optimal design and analysis of such systems, it is desirable to have a physical model that incorporates all factors that affect the image formation, including diffraction, aberration, defocusing, and pixel size. Therefore, in this study, using the fundamental Huygens‐Fresnel principle and the Arizona eye model with adjustable accommodation, we develop an image formation model that can numerically calculate the retinal light field image with near‐perfect accuracy, and experimentally verify it with a prototype system. Next, based on this model, the visual resolution is analyzed for different field of views (FOVs). As a result, a rapid resolution decay with respect to FOV caused by off‐axis aberration is demonstrated. Finally, resolution variations as a function of image depth are analyzed based on systems with different central depth planes. Significantly, the resolution decay is revealed to plateau when the image depth is large enough, which is different from real‐image type light field displays. An image formation model with near‐perfect accuracy is developed for near‐eye light field displays by incorporating all factors affecting the image quality: diffraction, aberration, defocusing, pixel size, etc. Model‐based optimizations are performed to enhance the resolution from 6.9 to 15.4 PPD. The influences of field of view and image depth are quantitatively analyzed.</description><subject>3D display</subject><subject>Aberration</subject><subject>Accommodation</subject><subject>Augmented reality</subject><subject>Decay</subject><subject>Defocusing</subject><subject>eye model</subject><subject>field of view</subject><subject>Helmet mounted displays</subject><subject>integral imaging</subject><subject>light field display</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Systems analysis</subject><subject>Virtual reality</subject><issn>1071-0922</issn><issn>1938-3657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYq-AgBN26m5tLcllIvrRRcqOuQSTI1JTOpSYvMzkfwGX0Sp9Sti8M5i4-fww_AJUYTjBC5WZfgJkLgIzDCisqKciaOhxsJXCFFyCk4K2U9SM6mfATmi9asPGxSbs02pA62yfkYuhU0nRvGxL6EAlMDO2_yz9e37z2MYfW-hU3w0UEXyiaavpyDk8bE4i_-9hi8Pdy_zubV8vlxMbtdVpYyhStFrKst9taRGlPMhHOqppQhSom3U4KQVMg3jEvJkbGGE6YcRhJ7XksrJB2Dq0PuJqePnS9bvU67PPxZNCGISaYUFYO6PiibUynZN3qTQ2tyrzHS-570vic99DTQ6kA_Q_T9v04_vSzu9v4X2v9p0g</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Qin, Zong</creator><creator>Chou, Ping‐Yen</creator><creator>Wu, Jui‐Yi</creator><creator>Chen, Yu‐Ting</creator><creator>Huang, Cheng‐Ting</creator><creator>Balram, Nikhil</creator><creator>Huang, Yi‐Pai</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7370-4784</orcidid><orcidid>https://orcid.org/0000-0002-6540-6429</orcidid><orcidid>https://orcid.org/0000-0001-5689-2085</orcidid></search><sort><creationdate>201904</creationdate><title>Image formation modeling and analysis of near‐eye light field displays</title><author>Qin, Zong ; Chou, Ping‐Yen ; Wu, Jui‐Yi ; Chen, Yu‐Ting ; Huang, Cheng‐Ting ; Balram, Nikhil ; Huang, Yi‐Pai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-92cdbc1ecd2b13157dd9b3350332ec4200890ef568860aca6259d1081e6b8c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D display</topic><topic>Aberration</topic><topic>Accommodation</topic><topic>Augmented reality</topic><topic>Decay</topic><topic>Defocusing</topic><topic>eye model</topic><topic>field of view</topic><topic>Helmet mounted displays</topic><topic>integral imaging</topic><topic>light field display</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Systems analysis</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Zong</creatorcontrib><creatorcontrib>Chou, Ping‐Yen</creatorcontrib><creatorcontrib>Wu, Jui‐Yi</creatorcontrib><creatorcontrib>Chen, Yu‐Ting</creatorcontrib><creatorcontrib>Huang, Cheng‐Ting</creatorcontrib><creatorcontrib>Balram, Nikhil</creatorcontrib><creatorcontrib>Huang, Yi‐Pai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Society for Information Display</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Zong</au><au>Chou, Ping‐Yen</au><au>Wu, Jui‐Yi</au><au>Chen, Yu‐Ting</au><au>Huang, Cheng‐Ting</au><au>Balram, Nikhil</au><au>Huang, Yi‐Pai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image formation modeling and analysis of near‐eye light field displays</atitle><jtitle>Journal of the Society for Information Display</jtitle><date>2019-04</date><risdate>2019</risdate><volume>27</volume><issue>4</issue><spage>238</spage><epage>250</epage><pages>238-250</pages><issn>1071-0922</issn><eissn>1938-3657</eissn><abstract>Near‐eye light field displays based on integral imaging through a microlens array provide attractive features like ultra‐compact volume and freedom of the vergence‐accommodation conflict to head‐mounted displays with virtual or augmented reality functions. To enable optimal design and analysis of such systems, it is desirable to have a physical model that incorporates all factors that affect the image formation, including diffraction, aberration, defocusing, and pixel size. Therefore, in this study, using the fundamental Huygens‐Fresnel principle and the Arizona eye model with adjustable accommodation, we develop an image formation model that can numerically calculate the retinal light field image with near‐perfect accuracy, and experimentally verify it with a prototype system. Next, based on this model, the visual resolution is analyzed for different field of views (FOVs). As a result, a rapid resolution decay with respect to FOV caused by off‐axis aberration is demonstrated. Finally, resolution variations as a function of image depth are analyzed based on systems with different central depth planes. Significantly, the resolution decay is revealed to plateau when the image depth is large enough, which is different from real‐image type light field displays. An image formation model with near‐perfect accuracy is developed for near‐eye light field displays by incorporating all factors affecting the image quality: diffraction, aberration, defocusing, pixel size, etc. Model‐based optimizations are performed to enhance the resolution from 6.9 to 15.4 PPD. The influences of field of view and image depth are quantitatively analyzed.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jsid.771</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7370-4784</orcidid><orcidid>https://orcid.org/0000-0002-6540-6429</orcidid><orcidid>https://orcid.org/0000-0001-5689-2085</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1071-0922
ispartof Journal of the Society for Information Display, 2019-04, Vol.27 (4), p.238-250
issn 1071-0922
1938-3657
language eng
recordid cdi_proquest_journals_2205859937
source Wiley Online Library Journals Frontfile Complete
subjects 3D display
Aberration
Accommodation
Augmented reality
Decay
Defocusing
eye model
field of view
Helmet mounted displays
integral imaging
light field display
Mathematical analysis
Mathematical models
Systems analysis
Virtual reality
title Image formation modeling and analysis of near‐eye light field displays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20formation%20modeling%20and%20analysis%20of%20near%E2%80%90eye%20light%20field%20displays&rft.jtitle=Journal%20of%20the%20Society%20for%20Information%20Display&rft.au=Qin,%20Zong&rft.date=2019-04&rft.volume=27&rft.issue=4&rft.spage=238&rft.epage=250&rft.pages=238-250&rft.issn=1071-0922&rft.eissn=1938-3657&rft_id=info:doi/10.1002/jsid.771&rft_dat=%3Cproquest_cross%3E2205859937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205859937&rft_id=info:pmid/&rfr_iscdi=true