Joint Learning of Pre-Trained and Random Units for Domain Adaptation in Part-of-Speech Tagging
Fine-tuning neural networks is widely used to transfer valuable knowledge from high-resource to low-resource domains. In a standard fine-tuning scheme, source and target problems are trained using the same architecture. Although capable of adapting to new domains, pre-trained units struggle with lea...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Meftah, Sara Youssef Tamaazousti Semmar, Nasredine Essafi, Hassane Sadat, Fatiha |
description | Fine-tuning neural networks is widely used to transfer valuable knowledge from high-resource to low-resource domains. In a standard fine-tuning scheme, source and target problems are trained using the same architecture. Although capable of adapting to new domains, pre-trained units struggle with learning uncommon target-specific patterns. In this paper, we propose to augment the target-network with normalised, weighted and randomly initialised units that beget a better adaptation while maintaining the valuable source knowledge. Our experiments on POS tagging of social media texts (Tweets domain) demonstrate that our method achieves state-of-the-art performances on 3 commonly used datasets. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2205749581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205749581</sourcerecordid><originalsourceid>FETCH-proquest_journals_22057495813</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_cMF1oE1aW5fiAxEXonVrCTapKTa3Jun_m4Uf4GYOwxlmQiLGeUrLjLEZiZ3rkiRhq4LlOY_I44TaeDhLYY02LaCCi5W0skIb2YAwDVxDYA93o70DhRZ22AcLm0YMXniNBkK7COspKnobpHy-oBJtG_4WZKrE28n4xzlZHvbV9kgHi59ROl93OFoTVM1YkhfZOi9T_t_qC59AQt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205749581</pqid></control><display><type>article</type><title>Joint Learning of Pre-Trained and Random Units for Domain Adaptation in Part-of-Speech Tagging</title><source>Free E- Journals</source><creator>Meftah, Sara ; Youssef Tamaazousti ; Semmar, Nasredine ; Essafi, Hassane ; Sadat, Fatiha</creator><creatorcontrib>Meftah, Sara ; Youssef Tamaazousti ; Semmar, Nasredine ; Essafi, Hassane ; Sadat, Fatiha</creatorcontrib><description>Fine-tuning neural networks is widely used to transfer valuable knowledge from high-resource to low-resource domains. In a standard fine-tuning scheme, source and target problems are trained using the same architecture. Although capable of adapting to new domains, pre-trained units struggle with learning uncommon target-specific patterns. In this paper, we propose to augment the target-network with normalised, weighted and randomly initialised units that beget a better adaptation while maintaining the valuable source knowledge. Our experiments on POS tagging of social media texts (Tweets domain) demonstrate that our method achieves state-of-the-art performances on 3 commonly used datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Digital media ; Domains ; Knowledge management ; Marking ; Neural networks ; Tuning</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Meftah, Sara</creatorcontrib><creatorcontrib>Youssef Tamaazousti</creatorcontrib><creatorcontrib>Semmar, Nasredine</creatorcontrib><creatorcontrib>Essafi, Hassane</creatorcontrib><creatorcontrib>Sadat, Fatiha</creatorcontrib><title>Joint Learning of Pre-Trained and Random Units for Domain Adaptation in Part-of-Speech Tagging</title><title>arXiv.org</title><description>Fine-tuning neural networks is widely used to transfer valuable knowledge from high-resource to low-resource domains. In a standard fine-tuning scheme, source and target problems are trained using the same architecture. Although capable of adapting to new domains, pre-trained units struggle with learning uncommon target-specific patterns. In this paper, we propose to augment the target-network with normalised, weighted and randomly initialised units that beget a better adaptation while maintaining the valuable source knowledge. Our experiments on POS tagging of social media texts (Tweets domain) demonstrate that our method achieves state-of-the-art performances on 3 commonly used datasets.</description><subject>Adaptation</subject><subject>Digital media</subject><subject>Domains</subject><subject>Knowledge management</subject><subject>Marking</subject><subject>Neural networks</subject><subject>Tuning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMsKwjAURIMgWLT_cMF1oE1aW5fiAxEXonVrCTapKTa3Jun_m4Uf4GYOwxlmQiLGeUrLjLEZiZ3rkiRhq4LlOY_I44TaeDhLYY02LaCCi5W0skIb2YAwDVxDYA93o70DhRZ22AcLm0YMXniNBkK7COspKnobpHy-oBJtG_4WZKrE28n4xzlZHvbV9kgHi59ROl93OFoTVM1YkhfZOi9T_t_qC59AQt4</recordid><startdate>20190407</startdate><enddate>20190407</enddate><creator>Meftah, Sara</creator><creator>Youssef Tamaazousti</creator><creator>Semmar, Nasredine</creator><creator>Essafi, Hassane</creator><creator>Sadat, Fatiha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190407</creationdate><title>Joint Learning of Pre-Trained and Random Units for Domain Adaptation in Part-of-Speech Tagging</title><author>Meftah, Sara ; Youssef Tamaazousti ; Semmar, Nasredine ; Essafi, Hassane ; Sadat, Fatiha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22057495813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Digital media</topic><topic>Domains</topic><topic>Knowledge management</topic><topic>Marking</topic><topic>Neural networks</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Meftah, Sara</creatorcontrib><creatorcontrib>Youssef Tamaazousti</creatorcontrib><creatorcontrib>Semmar, Nasredine</creatorcontrib><creatorcontrib>Essafi, Hassane</creatorcontrib><creatorcontrib>Sadat, Fatiha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meftah, Sara</au><au>Youssef Tamaazousti</au><au>Semmar, Nasredine</au><au>Essafi, Hassane</au><au>Sadat, Fatiha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Joint Learning of Pre-Trained and Random Units for Domain Adaptation in Part-of-Speech Tagging</atitle><jtitle>arXiv.org</jtitle><date>2019-04-07</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Fine-tuning neural networks is widely used to transfer valuable knowledge from high-resource to low-resource domains. In a standard fine-tuning scheme, source and target problems are trained using the same architecture. Although capable of adapting to new domains, pre-trained units struggle with learning uncommon target-specific patterns. In this paper, we propose to augment the target-network with normalised, weighted and randomly initialised units that beget a better adaptation while maintaining the valuable source knowledge. Our experiments on POS tagging of social media texts (Tweets domain) demonstrate that our method achieves state-of-the-art performances on 3 commonly used datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2205749581 |
source | Free E- Journals |
subjects | Adaptation Digital media Domains Knowledge management Marking Neural networks Tuning |
title | Joint Learning of Pre-Trained and Random Units for Domain Adaptation in Part-of-Speech Tagging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Joint%20Learning%20of%20Pre-Trained%20and%20Random%20Units%20for%20Domain%20Adaptation%20in%20Part-of-Speech%20Tagging&rft.jtitle=arXiv.org&rft.au=Meftah,%20Sara&rft.date=2019-04-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2205749581%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205749581&rft_id=info:pmid/&rfr_iscdi=true |