Advanced carbon electrode for electrochemical capacitors
Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interfac...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2019-04, Vol.23 (4), p.1061-1081 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1081 |
---|---|
container_issue | 4 |
container_start_page | 1061 |
container_title | Journal of solid state electrochemistry |
container_volume | 23 |
creator | Kado, Yuya Soneda, Yasushi Hatori, Hiroaki Kodama, Masaya |
description | Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices. |
doi_str_mv | 10.1007/s10008-019-04211-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205463214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205463214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWFf_gKeC5-hkkk2yx1L8goIXPYdsktWWdlOTrdR_b-wq3rzMB_O-M8xDyCWDawagbnKJoCmwhoJAxuj-iEyY4JyCkvr4UCPVQutTcpbzCoApyWBC9Mx_2N4FP3U2tbGfhnVwQ4o-TLuYfjv3FjZLZ9dFtLVuOcSUz8lJZ9c5XPzkirzc3T7PH-ji6f5xPltQx2s50AaUUk1ovLResbbpQvA1B20BJWKZupo3zvuOCbBcosXW2c6FNiBDIZBX5Grcu03xfRfyYFZxl_py0iBCLSTH8ltFcFS5FHNOoTPbtNzY9GkYmG9CZiRkCiFzIGT2xcRHUy7i_jWkv9X_uL4Ag_xpDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205463214</pqid></control><display><type>article</type><title>Advanced carbon electrode for electrochemical capacitors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kado, Yuya ; Soneda, Yasushi ; Hatori, Hiroaki ; Kodama, Masaya</creator><creatorcontrib>Kado, Yuya ; Soneda, Yasushi ; Hatori, Hiroaki ; Kodama, Masaya</creatorcontrib><description>Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-019-04211-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Aerogels ; Analytical Chemistry ; Capacitors ; Carbon ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Electrode materials ; Electrodes ; Energy Storage ; Graphene ; Ion adsorption ; Physical Chemistry ; Porosity ; Review Paper ; Storage batteries</subject><ispartof>Journal of solid state electrochemistry, 2019-04, Vol.23 (4), p.1061-1081</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</citedby><cites>FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</cites><orcidid>0000-0002-3165-9452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-019-04211-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-019-04211-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kado, Yuya</creatorcontrib><creatorcontrib>Soneda, Yasushi</creatorcontrib><creatorcontrib>Hatori, Hiroaki</creatorcontrib><creatorcontrib>Kodama, Masaya</creatorcontrib><title>Advanced carbon electrode for electrochemical capacitors</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.</description><subject>Activated carbon</subject><subject>Aerogels</subject><subject>Analytical Chemistry</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Graphene</subject><subject>Ion adsorption</subject><subject>Physical Chemistry</subject><subject>Porosity</subject><subject>Review Paper</subject><subject>Storage batteries</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWFf_gKeC5-hkkk2yx1L8goIXPYdsktWWdlOTrdR_b-wq3rzMB_O-M8xDyCWDawagbnKJoCmwhoJAxuj-iEyY4JyCkvr4UCPVQutTcpbzCoApyWBC9Mx_2N4FP3U2tbGfhnVwQ4o-TLuYfjv3FjZLZ9dFtLVuOcSUz8lJZ9c5XPzkirzc3T7PH-ji6f5xPltQx2s50AaUUk1ovLResbbpQvA1B20BJWKZupo3zvuOCbBcosXW2c6FNiBDIZBX5Grcu03xfRfyYFZxl_py0iBCLSTH8ltFcFS5FHNOoTPbtNzY9GkYmG9CZiRkCiFzIGT2xcRHUy7i_jWkv9X_uL4Ag_xpDA</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Kado, Yuya</creator><creator>Soneda, Yasushi</creator><creator>Hatori, Hiroaki</creator><creator>Kodama, Masaya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3165-9452</orcidid></search><sort><creationdate>20190412</creationdate><title>Advanced carbon electrode for electrochemical capacitors</title><author>Kado, Yuya ; Soneda, Yasushi ; Hatori, Hiroaki ; Kodama, Masaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Aerogels</topic><topic>Analytical Chemistry</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Graphene</topic><topic>Ion adsorption</topic><topic>Physical Chemistry</topic><topic>Porosity</topic><topic>Review Paper</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kado, Yuya</creatorcontrib><creatorcontrib>Soneda, Yasushi</creatorcontrib><creatorcontrib>Hatori, Hiroaki</creatorcontrib><creatorcontrib>Kodama, Masaya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kado, Yuya</au><au>Soneda, Yasushi</au><au>Hatori, Hiroaki</au><au>Kodama, Masaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced carbon electrode for electrochemical capacitors</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2019-04-12</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>1061</spage><epage>1081</epage><pages>1061-1081</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-019-04211-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3165-9452</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2019-04, Vol.23 (4), p.1061-1081 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_2205463214 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activated carbon Aerogels Analytical Chemistry Capacitors Carbon Carbon nanotubes Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Electrochemistry Electrode materials Electrodes Energy Storage Graphene Ion adsorption Physical Chemistry Porosity Review Paper Storage batteries |
title | Advanced carbon electrode for electrochemical capacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20carbon%20electrode%20for%20electrochemical%20capacitors&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Kado,%20Yuya&rft.date=2019-04-12&rft.volume=23&rft.issue=4&rft.spage=1061&rft.epage=1081&rft.pages=1061-1081&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-019-04211-x&rft_dat=%3Cproquest_cross%3E2205463214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205463214&rft_id=info:pmid/&rfr_iscdi=true |