Advanced carbon electrode for electrochemical capacitors

Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2019-04, Vol.23 (4), p.1061-1081
Hauptverfasser: Kado, Yuya, Soneda, Yasushi, Hatori, Hiroaki, Kodama, Masaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1081
container_issue 4
container_start_page 1061
container_title Journal of solid state electrochemistry
container_volume 23
creator Kado, Yuya
Soneda, Yasushi
Hatori, Hiroaki
Kodama, Masaya
description Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.
doi_str_mv 10.1007/s10008-019-04211-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205463214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205463214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWFf_gKeC5-hkkk2yx1L8goIXPYdsktWWdlOTrdR_b-wq3rzMB_O-M8xDyCWDawagbnKJoCmwhoJAxuj-iEyY4JyCkvr4UCPVQutTcpbzCoApyWBC9Mx_2N4FP3U2tbGfhnVwQ4o-TLuYfjv3FjZLZ9dFtLVuOcSUz8lJZ9c5XPzkirzc3T7PH-ji6f5xPltQx2s50AaUUk1ovLResbbpQvA1B20BJWKZupo3zvuOCbBcosXW2c6FNiBDIZBX5Grcu03xfRfyYFZxl_py0iBCLSTH8ltFcFS5FHNOoTPbtNzY9GkYmG9CZiRkCiFzIGT2xcRHUy7i_jWkv9X_uL4Ag_xpDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205463214</pqid></control><display><type>article</type><title>Advanced carbon electrode for electrochemical capacitors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kado, Yuya ; Soneda, Yasushi ; Hatori, Hiroaki ; Kodama, Masaya</creator><creatorcontrib>Kado, Yuya ; Soneda, Yasushi ; Hatori, Hiroaki ; Kodama, Masaya</creatorcontrib><description>Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-019-04211-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Aerogels ; Analytical Chemistry ; Capacitors ; Carbon ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Electrode materials ; Electrodes ; Energy Storage ; Graphene ; Ion adsorption ; Physical Chemistry ; Porosity ; Review Paper ; Storage batteries</subject><ispartof>Journal of solid state electrochemistry, 2019-04, Vol.23 (4), p.1061-1081</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</citedby><cites>FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</cites><orcidid>0000-0002-3165-9452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-019-04211-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-019-04211-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kado, Yuya</creatorcontrib><creatorcontrib>Soneda, Yasushi</creatorcontrib><creatorcontrib>Hatori, Hiroaki</creatorcontrib><creatorcontrib>Kodama, Masaya</creatorcontrib><title>Advanced carbon electrode for electrochemical capacitors</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.</description><subject>Activated carbon</subject><subject>Aerogels</subject><subject>Analytical Chemistry</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Graphene</subject><subject>Ion adsorption</subject><subject>Physical Chemistry</subject><subject>Porosity</subject><subject>Review Paper</subject><subject>Storage batteries</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWFf_gKeC5-hkkk2yx1L8goIXPYdsktWWdlOTrdR_b-wq3rzMB_O-M8xDyCWDawagbnKJoCmwhoJAxuj-iEyY4JyCkvr4UCPVQutTcpbzCoApyWBC9Mx_2N4FP3U2tbGfhnVwQ4o-TLuYfjv3FjZLZ9dFtLVuOcSUz8lJZ9c5XPzkirzc3T7PH-ji6f5xPltQx2s50AaUUk1ovLResbbpQvA1B20BJWKZupo3zvuOCbBcosXW2c6FNiBDIZBX5Grcu03xfRfyYFZxl_py0iBCLSTH8ltFcFS5FHNOoTPbtNzY9GkYmG9CZiRkCiFzIGT2xcRHUy7i_jWkv9X_uL4Ag_xpDA</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Kado, Yuya</creator><creator>Soneda, Yasushi</creator><creator>Hatori, Hiroaki</creator><creator>Kodama, Masaya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3165-9452</orcidid></search><sort><creationdate>20190412</creationdate><title>Advanced carbon electrode for electrochemical capacitors</title><author>Kado, Yuya ; Soneda, Yasushi ; Hatori, Hiroaki ; Kodama, Masaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-907779e9d6ad71b9feed5308a02622907c539cddf140a362a2bcafcebe2124423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Aerogels</topic><topic>Analytical Chemistry</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Graphene</topic><topic>Ion adsorption</topic><topic>Physical Chemistry</topic><topic>Porosity</topic><topic>Review Paper</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kado, Yuya</creatorcontrib><creatorcontrib>Soneda, Yasushi</creatorcontrib><creatorcontrib>Hatori, Hiroaki</creatorcontrib><creatorcontrib>Kodama, Masaya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kado, Yuya</au><au>Soneda, Yasushi</au><au>Hatori, Hiroaki</au><au>Kodama, Masaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced carbon electrode for electrochemical capacitors</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2019-04-12</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>1061</spage><epage>1081</epage><pages>1061-1081</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-019-04211-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3165-9452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2019-04, Vol.23 (4), p.1061-1081
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2205463214
source SpringerLink Journals - AutoHoldings
subjects Activated carbon
Aerogels
Analytical Chemistry
Capacitors
Carbon
Carbon nanotubes
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Electrode materials
Electrodes
Energy Storage
Graphene
Ion adsorption
Physical Chemistry
Porosity
Review Paper
Storage batteries
title Advanced carbon electrode for electrochemical capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20carbon%20electrode%20for%20electrochemical%20capacitors&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Kado,%20Yuya&rft.date=2019-04-12&rft.volume=23&rft.issue=4&rft.spage=1061&rft.epage=1081&rft.pages=1061-1081&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-019-04211-x&rft_dat=%3Cproquest_cross%3E2205463214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205463214&rft_id=info:pmid/&rfr_iscdi=true