A general framework for multi-label learning towards class correlations and class imbalance
In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations....
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2019-01, Vol.23 (2), p.371-383 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 2 |
container_start_page | 371 |
container_title | Intelligent data analysis |
container_volume | 23 |
creator | Peng, Yue Huang, Edward Chen, Gang Wang, Chongjun Xie, Junyuan |
description | In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves. |
doi_str_mv | 10.3233/IDA-183932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205460959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205460959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsXf0HAm7Caz93ssdSvQsGLguBhmWyyZWs2qZMtxX_vSr288zI8zMBDyDVnd1JIeb96WBTcyFqKEzLjuuKF4sKcTp0ZU6iy-jgnFzlvGWNKMDUjnwu68dEjBNohDP6Q8It2CemwD2NfBLA-0OABYx83dEwHQJdpGyBPmRB9gLFPMVOI7n_dDxYCxNZfkrMOQvZX_3NO3p8e35Yvxfr1ebVcrItW6HosrGW2Vl5L1SphJBPOOSErL41sK2ucVHVVgu2MsVZrz1sGypjOlZJ3nDGQc3JzvLvD9L33eWy2aY9xetkIwbQqWa3ribo9Ui2mnNF3zQ77AfCn4az5k9dM8pqjPPkL5JNh7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205460959</pqid></control><display><type>article</type><title>A general framework for multi-label learning towards class correlations and class imbalance</title><source>Business Source Complete</source><creator>Peng, Yue ; Huang, Edward ; Chen, Gang ; Wang, Chongjun ; Xie, Junyuan</creator><creatorcontrib>Peng, Yue ; Huang, Edward ; Chen, Gang ; Wang, Chongjun ; Xie, Junyuan</creatorcontrib><description>In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-183932</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Classification ; Correlation</subject><ispartof>Intelligent data analysis, 2019-01, Vol.23 (2), p.371-383</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</citedby><cites>FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Yue</creatorcontrib><creatorcontrib>Huang, Edward</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><title>A general framework for multi-label learning towards class correlations and class imbalance</title><title>Intelligent data analysis</title><description>In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves.</description><subject>Classification</subject><subject>Correlation</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsXf0HAm7Caz93ssdSvQsGLguBhmWyyZWs2qZMtxX_vSr288zI8zMBDyDVnd1JIeb96WBTcyFqKEzLjuuKF4sKcTp0ZU6iy-jgnFzlvGWNKMDUjnwu68dEjBNohDP6Q8It2CemwD2NfBLA-0OABYx83dEwHQJdpGyBPmRB9gLFPMVOI7n_dDxYCxNZfkrMOQvZX_3NO3p8e35Yvxfr1ebVcrItW6HosrGW2Vl5L1SphJBPOOSErL41sK2ucVHVVgu2MsVZrz1sGypjOlZJ3nDGQc3JzvLvD9L33eWy2aY9xetkIwbQqWa3ribo9Ui2mnNF3zQ77AfCn4az5k9dM8pqjPPkL5JNh7g</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Peng, Yue</creator><creator>Huang, Edward</creator><creator>Chen, Gang</creator><creator>Wang, Chongjun</creator><creator>Xie, Junyuan</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>A general framework for multi-label learning towards class correlations and class imbalance</title><author>Peng, Yue ; Huang, Edward ; Chen, Gang ; Wang, Chongjun ; Xie, Junyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yue</creatorcontrib><creatorcontrib>Huang, Edward</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yue</au><au>Huang, Edward</au><au>Chen, Gang</au><au>Wang, Chongjun</au><au>Xie, Junyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general framework for multi-label learning towards class correlations and class imbalance</atitle><jtitle>Intelligent data analysis</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>2</issue><spage>371</spage><epage>383</epage><pages>371-383</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/IDA-183932</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-467X |
ispartof | Intelligent data analysis, 2019-01, Vol.23 (2), p.371-383 |
issn | 1088-467X 1571-4128 |
language | eng |
recordid | cdi_proquest_journals_2205460959 |
source | Business Source Complete |
subjects | Classification Correlation |
title | A general framework for multi-label learning towards class correlations and class imbalance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20framework%20for%20multi-label%20learning%20towards%20class%20correlations%20and%20class%20imbalance&rft.jtitle=Intelligent%20data%20analysis&rft.au=Peng,%20Yue&rft.date=2019-01-01&rft.volume=23&rft.issue=2&rft.spage=371&rft.epage=383&rft.pages=371-383&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-183932&rft_dat=%3Cproquest_cross%3E2205460959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205460959&rft_id=info:pmid/&rfr_iscdi=true |