A general framework for multi-label learning towards class correlations and class imbalance

In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2019-01, Vol.23 (2), p.371-383
Hauptverfasser: Peng, Yue, Huang, Edward, Chen, Gang, Wang, Chongjun, Xie, Junyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 2
container_start_page 371
container_title Intelligent data analysis
container_volume 23
creator Peng, Yue
Huang, Edward
Chen, Gang
Wang, Chongjun
Xie, Junyuan
description In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves.
doi_str_mv 10.3233/IDA-183932
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205460959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205460959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsXf0HAm7Caz93ssdSvQsGLguBhmWyyZWs2qZMtxX_vSr288zI8zMBDyDVnd1JIeb96WBTcyFqKEzLjuuKF4sKcTp0ZU6iy-jgnFzlvGWNKMDUjnwu68dEjBNohDP6Q8It2CemwD2NfBLA-0OABYx83dEwHQJdpGyBPmRB9gLFPMVOI7n_dDxYCxNZfkrMOQvZX_3NO3p8e35Yvxfr1ebVcrItW6HosrGW2Vl5L1SphJBPOOSErL41sK2ucVHVVgu2MsVZrz1sGypjOlZJ3nDGQc3JzvLvD9L33eWy2aY9xetkIwbQqWa3ribo9Ui2mnNF3zQ77AfCn4az5k9dM8pqjPPkL5JNh7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205460959</pqid></control><display><type>article</type><title>A general framework for multi-label learning towards class correlations and class imbalance</title><source>Business Source Complete</source><creator>Peng, Yue ; Huang, Edward ; Chen, Gang ; Wang, Chongjun ; Xie, Junyuan</creator><creatorcontrib>Peng, Yue ; Huang, Edward ; Chen, Gang ; Wang, Chongjun ; Xie, Junyuan</creatorcontrib><description>In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-183932</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Classification ; Correlation</subject><ispartof>Intelligent data analysis, 2019-01, Vol.23 (2), p.371-383</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</citedby><cites>FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Yue</creatorcontrib><creatorcontrib>Huang, Edward</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><title>A general framework for multi-label learning towards class correlations and class imbalance</title><title>Intelligent data analysis</title><description>In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves.</description><subject>Classification</subject><subject>Correlation</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsXf0HAm7Caz93ssdSvQsGLguBhmWyyZWs2qZMtxX_vSr288zI8zMBDyDVnd1JIeb96WBTcyFqKEzLjuuKF4sKcTp0ZU6iy-jgnFzlvGWNKMDUjnwu68dEjBNohDP6Q8It2CemwD2NfBLA-0OABYx83dEwHQJdpGyBPmRB9gLFPMVOI7n_dDxYCxNZfkrMOQvZX_3NO3p8e35Yvxfr1ebVcrItW6HosrGW2Vl5L1SphJBPOOSErL41sK2ucVHVVgu2MsVZrz1sGypjOlZJ3nDGQc3JzvLvD9L33eWy2aY9xetkIwbQqWa3ribo9Ui2mnNF3zQ77AfCn4az5k9dM8pqjPPkL5JNh7g</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Peng, Yue</creator><creator>Huang, Edward</creator><creator>Chen, Gang</creator><creator>Wang, Chongjun</creator><creator>Xie, Junyuan</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>A general framework for multi-label learning towards class correlations and class imbalance</title><author>Peng, Yue ; Huang, Edward ; Chen, Gang ; Wang, Chongjun ; Xie, Junyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-bb0b94e534c428302ddd237e383c7b8d34976abf88bb55e1c0a488fd631f100a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yue</creatorcontrib><creatorcontrib>Huang, Edward</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, Chongjun</creatorcontrib><creatorcontrib>Xie, Junyuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yue</au><au>Huang, Edward</au><au>Chen, Gang</au><au>Wang, Chongjun</au><au>Xie, Junyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general framework for multi-label learning towards class correlations and class imbalance</atitle><jtitle>Intelligent data analysis</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>2</issue><spage>371</spage><epage>383</epage><pages>371-383</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>In multi-label classification settings, one of the most common problems is the massive label output space. To alleviate this, some methods opt to exploit label correlations to reduce the output space during prediction. However, these methods sacrifice efficiency or ignore global label correlations. In addition, label imbalances are another problem that is prevalent in multi-label classification. Current methods of correcting for imbalance oftentimes use single-label methods, which fail to consider label correlations. In this paper, we introduce general frameworks that incorporate topic modeling to seamlessly address both problems. We show that these frameworks can allow even the most naïve methods, such as Binary Relevance, to perform similarly to state-of-the-art methods. Furthermore, we show that our frameworks can also adapt state-of-the-art methods to perform better than the methods by themselves.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/IDA-183932</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2019-01, Vol.23 (2), p.371-383
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_journals_2205460959
source Business Source Complete
subjects Classification
Correlation
title A general framework for multi-label learning towards class correlations and class imbalance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20framework%20for%20multi-label%20learning%20towards%20class%20correlations%20and%20class%20imbalance&rft.jtitle=Intelligent%20data%20analysis&rft.au=Peng,%20Yue&rft.date=2019-01-01&rft.volume=23&rft.issue=2&rft.spage=371&rft.epage=383&rft.pages=371-383&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-183932&rft_dat=%3Cproquest_cross%3E2205460959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205460959&rft_id=info:pmid/&rfr_iscdi=true