Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus)
The genetic control of seed glucosinolate content in oilseed rape was investigated using two intervarietal backcross populations. Four QTLs segregating in the population derived from a Brassica napus L.'Victor' × Brassica napus L.'Tapidor' cross, together accounting for 76% of th...
Gespeichert in:
Veröffentlicht in: | Genome 2003-06, Vol.46 (3), p.454-460 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 3 |
container_start_page | 454 |
container_title | Genome |
container_volume | 46 |
creator | Howell, P M Sharpe, A G Lydiate, D J |
description | The genetic control of seed glucosinolate content in oilseed rape was investigated using two intervarietal backcross populations. Four QTLs segregating in the population derived from a Brassica napus L.'Victor' × Brassica napus L.'Tapidor' cross, together accounting for 76% of the phenotypic variation, were mapped. Three of these loci also appeared to control the accumulation of seed glucosinolates in a Brassica napus L. 'Bienvenu' × 'Tapidor' cross, and accounted for 86% of the phenotypic variation. The three QTLs common to both populations mapped to homoeologous regions of the B. napus genome, suggesting that seed glucosinolate accumulation is controlled by duplicate genes. It was possible to extend the comparative analysis of QTLs controlling seed glucosinolate accumulation by aligning the published genetic maps generated by several research groups. This comparative mapping demonstrated that high-glucosinolate varieties often carry low-glucosinolate alleles at one or more of the loci controlling seed glucosinolate accumulation.Key words: backcross, comparative mapping, genetic linkage map, marker-assisted breeding, QTL. |
doi_str_mv | 10.1139/g03-028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_220536020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73483154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-67302adea4ab7eaf76f00a973fae2ea1d22eef2a8915d0c32fecd355a7d399863</originalsourceid><addsrcrecordid>eNqF0U1L5TAUBuAgDnr9wH8wBBc6CtWTpB_pchRHBcGNrsO56cm10jadpF3Mv5_ovSAIM2YTyHl44eRl7EjAhRCqvlyBykDqLbYQuYZMKSm22QK0Epms6nKX7cX4CiBA1WKH7QqpVQ6lXLDlne89-c6v_Bx5523LrR-m4Ds-vRBHa-d-7nBq_cC945Go4atutj62g0_vFHmbJm33Pgk4Ev9xFTDG1iIfcJzj2QH75jDNDzf3Pnv-dfN0fZc9PN7eX_98yGwu9ZSVlQKJDWGOy4rQVaUDwLpSDkkSikZKIidR16JowCrpyDaqKLBqVF3rUu2zk3XuGPzvmeJk-jZa6jocKC1nKpWn_yjyL6HQ6VTv8PgTfPVzGNISRkooVAkSvkC5LvLyLel0jWzwMQZyZgxtj-GPEWDeGjSpQZMaTPL7Jm5e9tR8uE1lCZyvwRBsoEgY7Mt_0k7-jTfIjI1TfwFf-rD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220536020</pqid></control><display><type>article</type><title>Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus)</title><source>NRC Research Press</source><source>MEDLINE</source><creator>Howell, P M ; Sharpe, A G ; Lydiate, D J</creator><creatorcontrib>Howell, P M ; Sharpe, A G ; Lydiate, D J</creatorcontrib><description>The genetic control of seed glucosinolate content in oilseed rape was investigated using two intervarietal backcross populations. Four QTLs segregating in the population derived from a Brassica napus L.'Victor' × Brassica napus L.'Tapidor' cross, together accounting for 76% of the phenotypic variation, were mapped. Three of these loci also appeared to control the accumulation of seed glucosinolates in a Brassica napus L. 'Bienvenu' × 'Tapidor' cross, and accounted for 86% of the phenotypic variation. The three QTLs common to both populations mapped to homoeologous regions of the B. napus genome, suggesting that seed glucosinolate accumulation is controlled by duplicate genes. It was possible to extend the comparative analysis of QTLs controlling seed glucosinolate accumulation by aligning the published genetic maps generated by several research groups. This comparative mapping demonstrated that high-glucosinolate varieties often carry low-glucosinolate alleles at one or more of the loci controlling seed glucosinolate accumulation.Key words: backcross, comparative mapping, genetic linkage map, marker-assisted breeding, QTL.</description><identifier>ISSN: 0831-2796</identifier><identifier>EISSN: 1480-3321</identifier><identifier>DOI: 10.1139/g03-028</identifier><identifier>PMID: 12834062</identifier><identifier>CODEN: GENOE3</identifier><language>eng</language><publisher>Ottawa, Canada: NRC Research Press</publisher><subject>Accumulation ; Brassica napus - chemistry ; Brassica napus - genetics ; Crosses, Genetic ; Flowers & plants ; Genetics ; Glucosinolates - chemistry ; Phenotype ; Phenotypic variations ; Polymorphism, Restriction Fragment Length ; Quantitative Trait Loci - genetics ; Rape plants ; Seeds - chemistry</subject><ispartof>Genome, 2003-06, Vol.46 (3), p.454-460</ispartof><rights>Copyright National Research Council of Canada Jun 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-67302adea4ab7eaf76f00a973fae2ea1d22eef2a8915d0c32fecd355a7d399863</citedby><cites>FETCH-LOGICAL-c428t-67302adea4ab7eaf76f00a973fae2ea1d22eef2a8915d0c32fecd355a7d399863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/g03-028$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/g03-028$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2931,27923,27924,64427,65105</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12834062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howell, P M</creatorcontrib><creatorcontrib>Sharpe, A G</creatorcontrib><creatorcontrib>Lydiate, D J</creatorcontrib><title>Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus)</title><title>Genome</title><addtitle>Génome</addtitle><description>The genetic control of seed glucosinolate content in oilseed rape was investigated using two intervarietal backcross populations. Four QTLs segregating in the population derived from a Brassica napus L.'Victor' × Brassica napus L.'Tapidor' cross, together accounting for 76% of the phenotypic variation, were mapped. Three of these loci also appeared to control the accumulation of seed glucosinolates in a Brassica napus L. 'Bienvenu' × 'Tapidor' cross, and accounted for 86% of the phenotypic variation. The three QTLs common to both populations mapped to homoeologous regions of the B. napus genome, suggesting that seed glucosinolate accumulation is controlled by duplicate genes. It was possible to extend the comparative analysis of QTLs controlling seed glucosinolate accumulation by aligning the published genetic maps generated by several research groups. This comparative mapping demonstrated that high-glucosinolate varieties often carry low-glucosinolate alleles at one or more of the loci controlling seed glucosinolate accumulation.Key words: backcross, comparative mapping, genetic linkage map, marker-assisted breeding, QTL.</description><subject>Accumulation</subject><subject>Brassica napus - chemistry</subject><subject>Brassica napus - genetics</subject><subject>Crosses, Genetic</subject><subject>Flowers & plants</subject><subject>Genetics</subject><subject>Glucosinolates - chemistry</subject><subject>Phenotype</subject><subject>Phenotypic variations</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Rape plants</subject><subject>Seeds - chemistry</subject><issn>0831-2796</issn><issn>1480-3321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0U1L5TAUBuAgDnr9wH8wBBc6CtWTpB_pchRHBcGNrsO56cm10jadpF3Mv5_ovSAIM2YTyHl44eRl7EjAhRCqvlyBykDqLbYQuYZMKSm22QK0Epms6nKX7cX4CiBA1WKH7QqpVQ6lXLDlne89-c6v_Bx5523LrR-m4Ds-vRBHa-d-7nBq_cC945Go4atutj62g0_vFHmbJm33Pgk4Ev9xFTDG1iIfcJzj2QH75jDNDzf3Pnv-dfN0fZc9PN7eX_98yGwu9ZSVlQKJDWGOy4rQVaUDwLpSDkkSikZKIidR16JowCrpyDaqKLBqVF3rUu2zk3XuGPzvmeJk-jZa6jocKC1nKpWn_yjyL6HQ6VTv8PgTfPVzGNISRkooVAkSvkC5LvLyLel0jWzwMQZyZgxtj-GPEWDeGjSpQZMaTPL7Jm5e9tR8uE1lCZyvwRBsoEgY7Mt_0k7-jTfIjI1TfwFf-rD_</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Howell, P M</creator><creator>Sharpe, A G</creator><creator>Lydiate, D J</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M3G</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20030601</creationdate><title>Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus)</title><author>Howell, P M ; Sharpe, A G ; Lydiate, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-67302adea4ab7eaf76f00a973fae2ea1d22eef2a8915d0c32fecd355a7d399863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accumulation</topic><topic>Brassica napus - chemistry</topic><topic>Brassica napus - genetics</topic><topic>Crosses, Genetic</topic><topic>Flowers & plants</topic><topic>Genetics</topic><topic>Glucosinolates - chemistry</topic><topic>Phenotype</topic><topic>Phenotypic variations</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Rape plants</topic><topic>Seeds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howell, P M</creatorcontrib><creatorcontrib>Sharpe, A G</creatorcontrib><creatorcontrib>Lydiate, D J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>CBCA Reference & Current Events</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Genome</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howell, P M</au><au>Sharpe, A G</au><au>Lydiate, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus)</atitle><jtitle>Genome</jtitle><addtitle>Génome</addtitle><date>2003-06-01</date><risdate>2003</risdate><volume>46</volume><issue>3</issue><spage>454</spage><epage>460</epage><pages>454-460</pages><issn>0831-2796</issn><eissn>1480-3321</eissn><coden>GENOE3</coden><abstract>The genetic control of seed glucosinolate content in oilseed rape was investigated using two intervarietal backcross populations. Four QTLs segregating in the population derived from a Brassica napus L.'Victor' × Brassica napus L.'Tapidor' cross, together accounting for 76% of the phenotypic variation, were mapped. Three of these loci also appeared to control the accumulation of seed glucosinolates in a Brassica napus L. 'Bienvenu' × 'Tapidor' cross, and accounted for 86% of the phenotypic variation. The three QTLs common to both populations mapped to homoeologous regions of the B. napus genome, suggesting that seed glucosinolate accumulation is controlled by duplicate genes. It was possible to extend the comparative analysis of QTLs controlling seed glucosinolate accumulation by aligning the published genetic maps generated by several research groups. This comparative mapping demonstrated that high-glucosinolate varieties often carry low-glucosinolate alleles at one or more of the loci controlling seed glucosinolate accumulation.Key words: backcross, comparative mapping, genetic linkage map, marker-assisted breeding, QTL.</abstract><cop>Ottawa, Canada</cop><pub>NRC Research Press</pub><pmid>12834062</pmid><doi>10.1139/g03-028</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0831-2796 |
ispartof | Genome, 2003-06, Vol.46 (3), p.454-460 |
issn | 0831-2796 1480-3321 |
language | eng |
recordid | cdi_proquest_journals_220536020 |
source | NRC Research Press; MEDLINE |
subjects | Accumulation Brassica napus - chemistry Brassica napus - genetics Crosses, Genetic Flowers & plants Genetics Glucosinolates - chemistry Phenotype Phenotypic variations Polymorphism, Restriction Fragment Length Quantitative Trait Loci - genetics Rape plants Seeds - chemistry |
title | Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoeologous%20loci%20control%20the%20accumulation%20of%20seed%20glucosinolates%20in%20oilseed%20rape%20(Brassica%20napus)&rft.jtitle=Genome&rft.au=Howell,%20P%20M&rft.date=2003-06-01&rft.volume=46&rft.issue=3&rft.spage=454&rft.epage=460&rft.pages=454-460&rft.issn=0831-2796&rft.eissn=1480-3321&rft.coden=GENOE3&rft_id=info:doi/10.1139/g03-028&rft_dat=%3Cproquest_cross%3E73483154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220536020&rft_id=info:pmid/12834062&rfr_iscdi=true |