Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis

The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2019-04, Vol.233 (4), p.676-686
Hauptverfasser: Haghgoo, M, Ansari, R, Hassanzadeh-Aghdam, MK, Darvizeh, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 4
container_start_page 676
container_title Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications
container_volume 233
creator Haghgoo, M
Ansari, R
Hassanzadeh-Aghdam, MK
Darvizeh, A
description The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement.
doi_str_mv 10.1177/1464420717700927
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205353951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1464420717700927</sage_id><sourcerecordid>2205353951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwHPq5Nkd9P1Vkr9AMGLnpdJNmlTdjc1SYv97921giB4mRl4v_d4DCHXDG4Zk_KO5WWec5DDDVBxeUImHHKWCZDlKZmMcjbq5-Qixg0AMAlyQvbLFmPy23E6TZVZ4975QL2laW1oZxK2tMMU3Cftsffad1sfXTKRat8ndL3rV1RjUL7_BtJOmXhP57RzOvjO6DX2TsdMYTQNxR7bQ3TxkpxZbKO5-tlT8v6wfFs8ZS-vj8-L-UumBVQpKyuFKEwlUDFgqiorY7komGxKrViuGtsg580MQaiZBVEJrTlT0thZg7nVYkpujrnb4D92JqZ643dhKBFrzqEQhagKNlBwpIbGMQZj621wHYZDzaAev1v__e5gyY6WiCvzG_ov_wUCXnya</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205353951</pqid></control><display><type>article</type><title>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</title><source>SAGE Complete</source><creator>Haghgoo, M ; Ansari, R ; Hassanzadeh-Aghdam, MK ; Darvizeh, A</creator><creatorcontrib>Haghgoo, M ; Ansari, R ; Hassanzadeh-Aghdam, MK ; Darvizeh, A</creatorcontrib><description>The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/1464420717700927</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum ; Axial stress ; Carbon nanotubes ; Chemical reactions ; Elastoplasticity ; Material properties ; Metal matrix composites ; Micromechanics ; Nanocomposites ; Organic chemistry ; Strain ; Unit cell ; Yield criteria ; Yield stress</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2019-04, Vol.233 (4), p.676-686</ispartof><rights>IMechE 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</citedby><cites>FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1464420717700927$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1464420717700927$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Haghgoo, M</creatorcontrib><creatorcontrib>Ansari, R</creatorcontrib><creatorcontrib>Hassanzadeh-Aghdam, MK</creatorcontrib><creatorcontrib>Darvizeh, A</creatorcontrib><title>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><description>The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement.</description><subject>Aluminum</subject><subject>Axial stress</subject><subject>Carbon nanotubes</subject><subject>Chemical reactions</subject><subject>Elastoplasticity</subject><subject>Material properties</subject><subject>Metal matrix composites</subject><subject>Micromechanics</subject><subject>Nanocomposites</subject><subject>Organic chemistry</subject><subject>Strain</subject><subject>Unit cell</subject><subject>Yield criteria</subject><subject>Yield stress</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwHPq5Nkd9P1Vkr9AMGLnpdJNmlTdjc1SYv97921giB4mRl4v_d4DCHXDG4Zk_KO5WWec5DDDVBxeUImHHKWCZDlKZmMcjbq5-Qixg0AMAlyQvbLFmPy23E6TZVZ4975QL2laW1oZxK2tMMU3Cftsffad1sfXTKRat8ndL3rV1RjUL7_BtJOmXhP57RzOvjO6DX2TsdMYTQNxR7bQ3TxkpxZbKO5-tlT8v6wfFs8ZS-vj8-L-UumBVQpKyuFKEwlUDFgqiorY7komGxKrViuGtsg580MQaiZBVEJrTlT0thZg7nVYkpujrnb4D92JqZ643dhKBFrzqEQhagKNlBwpIbGMQZj621wHYZDzaAev1v__e5gyY6WiCvzG_ov_wUCXnya</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Haghgoo, M</creator><creator>Ansari, R</creator><creator>Hassanzadeh-Aghdam, MK</creator><creator>Darvizeh, A</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201904</creationdate><title>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</title><author>Haghgoo, M ; Ansari, R ; Hassanzadeh-Aghdam, MK ; Darvizeh, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Axial stress</topic><topic>Carbon nanotubes</topic><topic>Chemical reactions</topic><topic>Elastoplasticity</topic><topic>Material properties</topic><topic>Metal matrix composites</topic><topic>Micromechanics</topic><topic>Nanocomposites</topic><topic>Organic chemistry</topic><topic>Strain</topic><topic>Unit cell</topic><topic>Yield criteria</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghgoo, M</creatorcontrib><creatorcontrib>Ansari, R</creatorcontrib><creatorcontrib>Hassanzadeh-Aghdam, MK</creatorcontrib><creatorcontrib>Darvizeh, A</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghgoo, M</au><au>Ansari, R</au><au>Hassanzadeh-Aghdam, MK</au><au>Darvizeh, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><date>2019-04</date><risdate>2019</risdate><volume>233</volume><issue>4</issue><spage>676</spage><epage>686</epage><pages>676-686</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1464420717700927</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1464-4207
ispartof Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2019-04, Vol.233 (4), p.676-686
issn 1464-4207
2041-3076
language eng
recordid cdi_proquest_journals_2205353951
source SAGE Complete
subjects Aluminum
Axial stress
Carbon nanotubes
Chemical reactions
Elastoplasticity
Material properties
Metal matrix composites
Micromechanics
Nanocomposites
Organic chemistry
Strain
Unit cell
Yield criteria
Yield stress
title Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastoplastic%20behavior%20of%20the%20metal%20matrix%20nanocomposites%20containing%20carbon%20nanotubes:%20A%20micromechanics-based%20analysis&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Haghgoo,%20M&rft.date=2019-04&rft.volume=233&rft.issue=4&rft.spage=676&rft.epage=686&rft.pages=676-686&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/1464420717700927&rft_dat=%3Cproquest_cross%3E2205353951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205353951&rft_id=info:pmid/&rft_sage_id=10.1177_1464420717700927&rfr_iscdi=true