Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis
The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2019-04, Vol.233 (4), p.676-686 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 686 |
---|---|
container_issue | 4 |
container_start_page | 676 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications |
container_volume | 233 |
creator | Haghgoo, M Ansari, R Hassanzadeh-Aghdam, MK Darvizeh, A |
description | The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement. |
doi_str_mv | 10.1177/1464420717700927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2205353951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1464420717700927</sage_id><sourcerecordid>2205353951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwHPq5Nkd9P1Vkr9AMGLnpdJNmlTdjc1SYv97921giB4mRl4v_d4DCHXDG4Zk_KO5WWec5DDDVBxeUImHHKWCZDlKZmMcjbq5-Qixg0AMAlyQvbLFmPy23E6TZVZ4975QL2laW1oZxK2tMMU3Cftsffad1sfXTKRat8ndL3rV1RjUL7_BtJOmXhP57RzOvjO6DX2TsdMYTQNxR7bQ3TxkpxZbKO5-tlT8v6wfFs8ZS-vj8-L-UumBVQpKyuFKEwlUDFgqiorY7komGxKrViuGtsg580MQaiZBVEJrTlT0thZg7nVYkpujrnb4D92JqZ643dhKBFrzqEQhagKNlBwpIbGMQZj621wHYZDzaAev1v__e5gyY6WiCvzG_ov_wUCXnya</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205353951</pqid></control><display><type>article</type><title>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</title><source>SAGE Complete</source><creator>Haghgoo, M ; Ansari, R ; Hassanzadeh-Aghdam, MK ; Darvizeh, A</creator><creatorcontrib>Haghgoo, M ; Ansari, R ; Hassanzadeh-Aghdam, MK ; Darvizeh, A</creatorcontrib><description>The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/1464420717700927</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aluminum ; Axial stress ; Carbon nanotubes ; Chemical reactions ; Elastoplasticity ; Material properties ; Metal matrix composites ; Micromechanics ; Nanocomposites ; Organic chemistry ; Strain ; Unit cell ; Yield criteria ; Yield stress</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2019-04, Vol.233 (4), p.676-686</ispartof><rights>IMechE 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</citedby><cites>FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1464420717700927$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1464420717700927$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Haghgoo, M</creatorcontrib><creatorcontrib>Ansari, R</creatorcontrib><creatorcontrib>Hassanzadeh-Aghdam, MK</creatorcontrib><creatorcontrib>Darvizeh, A</creatorcontrib><title>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><description>The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement.</description><subject>Aluminum</subject><subject>Axial stress</subject><subject>Carbon nanotubes</subject><subject>Chemical reactions</subject><subject>Elastoplasticity</subject><subject>Material properties</subject><subject>Metal matrix composites</subject><subject>Micromechanics</subject><subject>Nanocomposites</subject><subject>Organic chemistry</subject><subject>Strain</subject><subject>Unit cell</subject><subject>Yield criteria</subject><subject>Yield stress</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwHPq5Nkd9P1Vkr9AMGLnpdJNmlTdjc1SYv97921giB4mRl4v_d4DCHXDG4Zk_KO5WWec5DDDVBxeUImHHKWCZDlKZmMcjbq5-Qixg0AMAlyQvbLFmPy23E6TZVZ4975QL2laW1oZxK2tMMU3Cftsffad1sfXTKRat8ndL3rV1RjUL7_BtJOmXhP57RzOvjO6DX2TsdMYTQNxR7bQ3TxkpxZbKO5-tlT8v6wfFs8ZS-vj8-L-UumBVQpKyuFKEwlUDFgqiorY7komGxKrViuGtsg580MQaiZBVEJrTlT0thZg7nVYkpujrnb4D92JqZ643dhKBFrzqEQhagKNlBwpIbGMQZj621wHYZDzaAev1v__e5gyY6WiCvzG_ov_wUCXnya</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Haghgoo, M</creator><creator>Ansari, R</creator><creator>Hassanzadeh-Aghdam, MK</creator><creator>Darvizeh, A</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201904</creationdate><title>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</title><author>Haghgoo, M ; Ansari, R ; Hassanzadeh-Aghdam, MK ; Darvizeh, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-69baa3e93ab101b969ef23517d6cb14bdfda22d8a03b8f0393cc21b7ef8da4fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Axial stress</topic><topic>Carbon nanotubes</topic><topic>Chemical reactions</topic><topic>Elastoplasticity</topic><topic>Material properties</topic><topic>Metal matrix composites</topic><topic>Micromechanics</topic><topic>Nanocomposites</topic><topic>Organic chemistry</topic><topic>Strain</topic><topic>Unit cell</topic><topic>Yield criteria</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghgoo, M</creatorcontrib><creatorcontrib>Ansari, R</creatorcontrib><creatorcontrib>Hassanzadeh-Aghdam, MK</creatorcontrib><creatorcontrib>Darvizeh, A</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghgoo, M</au><au>Ansari, R</au><au>Hassanzadeh-Aghdam, MK</au><au>Darvizeh, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><date>2019-04</date><risdate>2019</risdate><volume>233</volume><issue>4</issue><spage>676</spage><epage>686</epage><pages>676-686</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>The elastoplastic behavior of aluminum (Al) nanocomposites reinforced with aligned carbon nanotubes (CNTs) is characterized using a unit cell micromechanical model. The interphase zone caused by the chemical reaction between CNT and Al matrix is included in the analysis. To attain the elastoplastic stress–strain curve of the nanocomposites, the successive approximation method together with the von Mises yield criterion is employed. The effects of several important factors including the volume fraction and diameter of CNT, material properties, and size of interphase on the elastoplastic stress–strain curve of the nanocomposites during uniaxial tension are studied. The results indicate that the interphase characteristics significantly affect the elastoplastic behavior of the CNT-reinforced Al nanocomposites. It is also found that the yield stress of the nanocomposites rises with increasing CNT volume fraction or decreasing CNT diameter. Besides, the elastoplastic stress–strain curve of the CNT-reinforced Al nanocomposites is presented for multiaxial tension. The initial yield envelopes of the nanocomposites under longitudinal–transverse biaxial tension are provided too. Comparison between the elastic results of the present model with those of other available micromechanical analyses shows a very good agreement.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1464420717700927</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4207 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2019-04, Vol.233 (4), p.676-686 |
issn | 1464-4207 2041-3076 |
language | eng |
recordid | cdi_proquest_journals_2205353951 |
source | SAGE Complete |
subjects | Aluminum Axial stress Carbon nanotubes Chemical reactions Elastoplasticity Material properties Metal matrix composites Micromechanics Nanocomposites Organic chemistry Strain Unit cell Yield criteria Yield stress |
title | Elastoplastic behavior of the metal matrix nanocomposites containing carbon nanotubes: A micromechanics-based analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastoplastic%20behavior%20of%20the%20metal%20matrix%20nanocomposites%20containing%20carbon%20nanotubes:%20A%20micromechanics-based%20analysis&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Haghgoo,%20M&rft.date=2019-04&rft.volume=233&rft.issue=4&rft.spage=676&rft.epage=686&rft.pages=676-686&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/1464420717700927&rft_dat=%3Cproquest_cross%3E2205353951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2205353951&rft_id=info:pmid/&rft_sage_id=10.1177_1464420717700927&rfr_iscdi=true |