A fuzzy bootstrap test for the mean with Dp,q-distance

In this paper, we consider the problem of testing a simple hypothesis about the mean of a fuzzy random variable. For this purpose, we take a distance between the sample mean and the mean in the null hypothesis as a test statistic. An asymptotic test about the fuzzy mean is obtained by using a centra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy information and engineering 2011-12, Vol.3 (4), p.351-358
Hauptverfasser: Sadeghpour-Gildeh, Bahram, Rahimpour, Sedigheh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 4
container_start_page 351
container_title Fuzzy information and engineering
container_volume 3
creator Sadeghpour-Gildeh, Bahram
Rahimpour, Sedigheh
description In this paper, we consider the problem of testing a simple hypothesis about the mean of a fuzzy random variable. For this purpose, we take a distance between the sample mean and the mean in the null hypothesis as a test statistic. An asymptotic test about the fuzzy mean is obtained by using a central limit theorem. The asymptotical distribution is ω 2 -distribution. The ω 2 -distribution is only known for special cases, thus we have considered random LR -fuzzy numbers. In the fuzzy concept, in addition to the existence of several versions of the central limit theorem, there is another practical disadvantage: The limit law is, in most cases, difficult to handle. Therefore, the central limit theorem for fuzzy random variable does not seem to be a very useful tool to make inferences on the mean of fuzzy random variable. Thus we use the bootstrap technique. Finally, by means of a simulation study, we show that the bootstrap method is a powerful tool in the statistical hypothesis testing about the mean of fuzzy random variables.
doi_str_mv 10.1007/s12543-011-0090-9
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2204818715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204818715</sourcerecordid><originalsourceid>FETCH-LOGICAL-p199t-a3c801487df0060b2a06dcdf53f1d6d3e7486e27debf38111fb12f86ba874e223</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGp_gLeAV6MzyW6SPZb6CQUveg7ZTWK36O42SRH7692yonOZOTzM-_IQcolwgwDqNiEvC8EAkQFUwKoTMkOJkmkp5enfXepzskhpC-MILLXQMyKXNOwPh29a931OOdqBZp8yDX2keePpp7cd_Wrzht4N1zvm2pRt1_gLchbsR_KL3z0nbw_3r6sntn55fF4t12zAqsrMikYDFlq5ACCh5haka1woRUAnnfCq0NJz5XwdhEbEUCMPWtZWq8JzLubkavo7xH63H4uZbb-P3RhpOIdCo1ZYjhSfqDTEtnv38Z9CMEdFZlJkRkXmqMhU4gfIlleg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204818715</pqid></control><display><type>article</type><title>A fuzzy bootstrap test for the mean with Dp,q-distance</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sadeghpour-Gildeh, Bahram ; Rahimpour, Sedigheh</creator><creatorcontrib>Sadeghpour-Gildeh, Bahram ; Rahimpour, Sedigheh</creatorcontrib><description>In this paper, we consider the problem of testing a simple hypothesis about the mean of a fuzzy random variable. For this purpose, we take a distance between the sample mean and the mean in the null hypothesis as a test statistic. An asymptotic test about the fuzzy mean is obtained by using a central limit theorem. The asymptotical distribution is ω 2 -distribution. The ω 2 -distribution is only known for special cases, thus we have considered random LR -fuzzy numbers. In the fuzzy concept, in addition to the existence of several versions of the central limit theorem, there is another practical disadvantage: The limit law is, in most cases, difficult to handle. Therefore, the central limit theorem for fuzzy random variable does not seem to be a very useful tool to make inferences on the mean of fuzzy random variable. Thus we use the bootstrap technique. Finally, by means of a simulation study, we show that the bootstrap method is a powerful tool in the statistical hypothesis testing about the mean of fuzzy random variables.</description><identifier>ISSN: 1616-8658</identifier><identifier>EISSN: 1616-8666</identifier><identifier>DOI: 10.1007/s12543-011-0090-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Asymptotic properties ; Computational Intelligence ; Engineering ; Existence theorems ; Hypotheses ; Null hypothesis ; Original Article ; Random variables ; Regression analysis ; Statistical analysis ; Statistical methods</subject><ispartof>Fuzzy information and engineering, 2011-12, Vol.3 (4), p.351-358</ispartof><rights>Springer-Verlag Berlin Heidelberg and Fuzzy Information and Engineering Branch of the Operations Research Society of China 2011</rights><rights>2011 Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p199t-a3c801487df0060b2a06dcdf53f1d6d3e7486e27debf38111fb12f86ba874e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sadeghpour-Gildeh, Bahram</creatorcontrib><creatorcontrib>Rahimpour, Sedigheh</creatorcontrib><title>A fuzzy bootstrap test for the mean with Dp,q-distance</title><title>Fuzzy information and engineering</title><addtitle>Fuzzy Inf. Eng</addtitle><description>In this paper, we consider the problem of testing a simple hypothesis about the mean of a fuzzy random variable. For this purpose, we take a distance between the sample mean and the mean in the null hypothesis as a test statistic. An asymptotic test about the fuzzy mean is obtained by using a central limit theorem. The asymptotical distribution is ω 2 -distribution. The ω 2 -distribution is only known for special cases, thus we have considered random LR -fuzzy numbers. In the fuzzy concept, in addition to the existence of several versions of the central limit theorem, there is another practical disadvantage: The limit law is, in most cases, difficult to handle. Therefore, the central limit theorem for fuzzy random variable does not seem to be a very useful tool to make inferences on the mean of fuzzy random variable. Thus we use the bootstrap technique. Finally, by means of a simulation study, we show that the bootstrap method is a powerful tool in the statistical hypothesis testing about the mean of fuzzy random variables.</description><subject>Asymptotic properties</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Existence theorems</subject><subject>Hypotheses</subject><subject>Null hypothesis</subject><subject>Original Article</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1616-8658</issn><issn>1616-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LAzEQhoMoWGp_gLeAV6MzyW6SPZb6CQUveg7ZTWK36O42SRH7692yonOZOTzM-_IQcolwgwDqNiEvC8EAkQFUwKoTMkOJkmkp5enfXepzskhpC-MILLXQMyKXNOwPh29a931OOdqBZp8yDX2keePpp7cd_Wrzht4N1zvm2pRt1_gLchbsR_KL3z0nbw_3r6sntn55fF4t12zAqsrMikYDFlq5ACCh5haka1woRUAnnfCq0NJz5XwdhEbEUCMPWtZWq8JzLubkavo7xH63H4uZbb-P3RhpOIdCo1ZYjhSfqDTEtnv38Z9CMEdFZlJkRkXmqMhU4gfIlleg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Sadeghpour-Gildeh, Bahram</creator><creator>Rahimpour, Sedigheh</creator><general>Springer-Verlag</general><general>Taylor &amp; Francis Group</general><scope/></search><sort><creationdate>20111201</creationdate><title>A fuzzy bootstrap test for the mean with Dp,q-distance</title><author>Sadeghpour-Gildeh, Bahram ; Rahimpour, Sedigheh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p199t-a3c801487df0060b2a06dcdf53f1d6d3e7486e27debf38111fb12f86ba874e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Existence theorems</topic><topic>Hypotheses</topic><topic>Null hypothesis</topic><topic>Original Article</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghpour-Gildeh, Bahram</creatorcontrib><creatorcontrib>Rahimpour, Sedigheh</creatorcontrib><jtitle>Fuzzy information and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghpour-Gildeh, Bahram</au><au>Rahimpour, Sedigheh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fuzzy bootstrap test for the mean with Dp,q-distance</atitle><jtitle>Fuzzy information and engineering</jtitle><stitle>Fuzzy Inf. Eng</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>3</volume><issue>4</issue><spage>351</spage><epage>358</epage><pages>351-358</pages><issn>1616-8658</issn><eissn>1616-8666</eissn><abstract>In this paper, we consider the problem of testing a simple hypothesis about the mean of a fuzzy random variable. For this purpose, we take a distance between the sample mean and the mean in the null hypothesis as a test statistic. An asymptotic test about the fuzzy mean is obtained by using a central limit theorem. The asymptotical distribution is ω 2 -distribution. The ω 2 -distribution is only known for special cases, thus we have considered random LR -fuzzy numbers. In the fuzzy concept, in addition to the existence of several versions of the central limit theorem, there is another practical disadvantage: The limit law is, in most cases, difficult to handle. Therefore, the central limit theorem for fuzzy random variable does not seem to be a very useful tool to make inferences on the mean of fuzzy random variable. Thus we use the bootstrap technique. Finally, by means of a simulation study, we show that the bootstrap method is a powerful tool in the statistical hypothesis testing about the mean of fuzzy random variables.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12543-011-0090-9</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-8658
ispartof Fuzzy information and engineering, 2011-12, Vol.3 (4), p.351-358
issn 1616-8658
1616-8666
language eng
recordid cdi_proquest_journals_2204818715
source EZB-FREE-00999 freely available EZB journals
subjects Asymptotic properties
Computational Intelligence
Engineering
Existence theorems
Hypotheses
Null hypothesis
Original Article
Random variables
Regression analysis
Statistical analysis
Statistical methods
title A fuzzy bootstrap test for the mean with Dp,q-distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fuzzy%20bootstrap%20test%20for%20the%20mean%20with%20Dp,q-distance&rft.jtitle=Fuzzy%20information%20and%20engineering&rft.au=Sadeghpour-Gildeh,%20Bahram&rft.date=2011-12-01&rft.volume=3&rft.issue=4&rft.spage=351&rft.epage=358&rft.pages=351-358&rft.issn=1616-8658&rft.eissn=1616-8666&rft_id=info:doi/10.1007/s12543-011-0090-9&rft_dat=%3Cproquest_sprin%3E2204818715%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204818715&rft_id=info:pmid/&rfr_iscdi=true