Fabrication of Water-Based TiO2-Coated Pleated Synthetic Fiber toward Photocatalytic Oxidation of VOCs and CO for Indoor Air Quality Improvement
AbstractWhile titanium dioxide (TiO2) is highly regarded as one of the most promising catalysts for air-pollution mitigation, its practical use has been challenging due to structural complexity, process scalability, and high cost of existing fabrication methods. In this study, a facile spray-coating...
Gespeichert in:
Veröffentlicht in: | Journal of environmental engineering (New York, N.Y.) N.Y.), 2019-06, Vol.145 (6) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of environmental engineering (New York, N.Y.) |
container_volume | 145 |
creator | Chawengkijwanich, Chamorn Pokhum, Chonlada Srisitthiratkul, Chutima Subjalearndee, Nakarin Pongsorrarith, Voraluck Yaipimai, Wittaya Phanomkate, Nipon Intasanta, Varol |
description | AbstractWhile titanium dioxide (TiO2) is highly regarded as one of the most promising catalysts for air-pollution mitigation, its practical use has been challenging due to structural complexity, process scalability, and high cost of existing fabrication methods. In this study, a facile spray-coating method is employed for fabrication of a TiO2-coated filter, with fibrous structure allowing for satisfactory airflow, sufficient pollutant–catalyst interactions, and reusability. Scanning electron microscopy (SEM) analysis shows that TiO2 nanoparticles were immobilized firmly on the surface of the membrane’s fibers. Energy dispersive X-ray (EDX) analysis reveals a homogeneous layer of TiO2 nanoparticles on the pleated washable synthetic (PWS) fibers. The photocatalytic oxidations of volatile organic compounds (VOCs) and carbon monoxide (CO) are analyzed in both the laboratory and field tests. TiO2-coated PWS filter membrane (60×60×5 cm) shows higher benzene and toluene removal efficiency (approximately 80%–86%) under UV radiation than that in the dark (less than 10%). This result indicates that photocatalytic oxidation on the surface of TiO2-coated PWS filter membrane contributes greatly to benzene and toluene degradation. The corresponding pilot-scale photocatalytic air filtration unit shows ethylene reduction rate of 1.59±0.52 ppm min−1 in a 45 m3 postharvest storage room. In a demonstrative elimination of automotive exhaust gases, the TiO2 coated PWS filter membrane shows a 16% decrease in CO generated from a motorcycle. This study shows the potential use of the cost-effective TiO2-coated filter membrane for indoor air quality improvement. |
doi_str_mv | 10.1061/(ASCE)EE.1943-7870.0001521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2204522391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204522391</sourcerecordid><originalsourceid>FETCH-LOGICAL-a304t-415a3b87757c1434e91e89e664bee59f5c50370ce15f7ea07a4bcea23643ad7d3</originalsourceid><addsrcrecordid>eNp1UV1P2zAUtSaQKB__wdpetocUO3biZm9dlG6VkAIqG4_WTXIjjNqY2S5b_8V-Ms4K5YmnI93zJd1DyEfOppzl_PLzfFVWX6pqygspEjVTbMoY41nKP5DJ4XZEJkwJkRRCpSfk1PuHqJF5oSbk3wIaZ1oIxg7U9vQOArrkG3js6K2p06S08dLR6zX-x9VuCPcYTEsXpkFHg_0DLtL3NtiYAuvdyNV_TXeI_FWXnsLQ0bKmvXV0OXQ2wtw4erOFtQk7utw8OvuEGxzCOTnuYe3x4gXPyM9FdVv-SK7q78tyfpWAYDIkkmcgmplSmWq5FBILjrMC81w2iFnRZ23GhGIt8qxXCEyBbFqEVORSQKc6cUY-7XNj8-8t-qAf7NYNsVKnKZNZmoqCR9XXvap11nuHvX50ZgNupznT4wJajwvoqtLjt_X4bf2yQDTnezP4Ft_iX53vG58Bxz2LCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204522391</pqid></control><display><type>article</type><title>Fabrication of Water-Based TiO2-Coated Pleated Synthetic Fiber toward Photocatalytic Oxidation of VOCs and CO for Indoor Air Quality Improvement</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Chawengkijwanich, Chamorn ; Pokhum, Chonlada ; Srisitthiratkul, Chutima ; Subjalearndee, Nakarin ; Pongsorrarith, Voraluck ; Yaipimai, Wittaya ; Phanomkate, Nipon ; Intasanta, Varol</creator><creatorcontrib>Chawengkijwanich, Chamorn ; Pokhum, Chonlada ; Srisitthiratkul, Chutima ; Subjalearndee, Nakarin ; Pongsorrarith, Voraluck ; Yaipimai, Wittaya ; Phanomkate, Nipon ; Intasanta, Varol</creatorcontrib><description>AbstractWhile titanium dioxide (TiO2) is highly regarded as one of the most promising catalysts for air-pollution mitigation, its practical use has been challenging due to structural complexity, process scalability, and high cost of existing fabrication methods. In this study, a facile spray-coating method is employed for fabrication of a TiO2-coated filter, with fibrous structure allowing for satisfactory airflow, sufficient pollutant–catalyst interactions, and reusability. Scanning electron microscopy (SEM) analysis shows that TiO2 nanoparticles were immobilized firmly on the surface of the membrane’s fibers. Energy dispersive X-ray (EDX) analysis reveals a homogeneous layer of TiO2 nanoparticles on the pleated washable synthetic (PWS) fibers. The photocatalytic oxidations of volatile organic compounds (VOCs) and carbon monoxide (CO) are analyzed in both the laboratory and field tests. TiO2-coated PWS filter membrane (60×60×5 cm) shows higher benzene and toluene removal efficiency (approximately 80%–86%) under UV radiation than that in the dark (less than 10%). This result indicates that photocatalytic oxidation on the surface of TiO2-coated PWS filter membrane contributes greatly to benzene and toluene degradation. The corresponding pilot-scale photocatalytic air filtration unit shows ethylene reduction rate of 1.59±0.52 ppm min−1 in a 45 m3 postharvest storage room. In a demonstrative elimination of automotive exhaust gases, the TiO2 coated PWS filter membrane shows a 16% decrease in CO generated from a motorcycle. This study shows the potential use of the cost-effective TiO2-coated filter membrane for indoor air quality improvement.</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)EE.1943-7870.0001521</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Air flow ; Air pollution ; Air quality ; Benzene ; Carbon monoxide ; Catalysis ; Catalysts ; Coating effects ; Coatings ; Exhaust gases ; Fabrication ; Fibers ; Fibrous structure ; Field tests ; Gases ; Hydrocarbons ; Indoor air pollution ; Indoor air quality ; Indoor environments ; Mitigation ; Motorcycles ; Nanoparticles ; Organic compounds ; Oxidation ; Photocatalysis ; Photooxidation ; Pollutants ; Pollution control ; Quality control ; Scanning electron microscopy ; Synthetic fibers ; Technical Papers ; Titanium dioxide ; Toluene ; Ultraviolet radiation ; Vehicle emissions ; VOCs ; Volatile organic compounds ; Water pollution</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 2019-06, Vol.145 (6)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a304t-415a3b87757c1434e91e89e664bee59f5c50370ce15f7ea07a4bcea23643ad7d3</citedby><cites>FETCH-LOGICAL-a304t-415a3b87757c1434e91e89e664bee59f5c50370ce15f7ea07a4bcea23643ad7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EE.1943-7870.0001521$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0001521$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Chawengkijwanich, Chamorn</creatorcontrib><creatorcontrib>Pokhum, Chonlada</creatorcontrib><creatorcontrib>Srisitthiratkul, Chutima</creatorcontrib><creatorcontrib>Subjalearndee, Nakarin</creatorcontrib><creatorcontrib>Pongsorrarith, Voraluck</creatorcontrib><creatorcontrib>Yaipimai, Wittaya</creatorcontrib><creatorcontrib>Phanomkate, Nipon</creatorcontrib><creatorcontrib>Intasanta, Varol</creatorcontrib><title>Fabrication of Water-Based TiO2-Coated Pleated Synthetic Fiber toward Photocatalytic Oxidation of VOCs and CO for Indoor Air Quality Improvement</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>AbstractWhile titanium dioxide (TiO2) is highly regarded as one of the most promising catalysts for air-pollution mitigation, its practical use has been challenging due to structural complexity, process scalability, and high cost of existing fabrication methods. In this study, a facile spray-coating method is employed for fabrication of a TiO2-coated filter, with fibrous structure allowing for satisfactory airflow, sufficient pollutant–catalyst interactions, and reusability. Scanning electron microscopy (SEM) analysis shows that TiO2 nanoparticles were immobilized firmly on the surface of the membrane’s fibers. Energy dispersive X-ray (EDX) analysis reveals a homogeneous layer of TiO2 nanoparticles on the pleated washable synthetic (PWS) fibers. The photocatalytic oxidations of volatile organic compounds (VOCs) and carbon monoxide (CO) are analyzed in both the laboratory and field tests. TiO2-coated PWS filter membrane (60×60×5 cm) shows higher benzene and toluene removal efficiency (approximately 80%–86%) under UV radiation than that in the dark (less than 10%). This result indicates that photocatalytic oxidation on the surface of TiO2-coated PWS filter membrane contributes greatly to benzene and toluene degradation. The corresponding pilot-scale photocatalytic air filtration unit shows ethylene reduction rate of 1.59±0.52 ppm min−1 in a 45 m3 postharvest storage room. In a demonstrative elimination of automotive exhaust gases, the TiO2 coated PWS filter membrane shows a 16% decrease in CO generated from a motorcycle. This study shows the potential use of the cost-effective TiO2-coated filter membrane for indoor air quality improvement.</description><subject>Air flow</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Benzene</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Coating effects</subject><subject>Coatings</subject><subject>Exhaust gases</subject><subject>Fabrication</subject><subject>Fibers</subject><subject>Fibrous structure</subject><subject>Field tests</subject><subject>Gases</subject><subject>Hydrocarbons</subject><subject>Indoor air pollution</subject><subject>Indoor air quality</subject><subject>Indoor environments</subject><subject>Mitigation</subject><subject>Motorcycles</subject><subject>Nanoparticles</subject><subject>Organic compounds</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photooxidation</subject><subject>Pollutants</subject><subject>Pollution control</subject><subject>Quality control</subject><subject>Scanning electron microscopy</subject><subject>Synthetic fibers</subject><subject>Technical Papers</subject><subject>Titanium dioxide</subject><subject>Toluene</subject><subject>Ultraviolet radiation</subject><subject>Vehicle emissions</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Water pollution</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UV1P2zAUtSaQKB__wdpetocUO3biZm9dlG6VkAIqG4_WTXIjjNqY2S5b_8V-Ms4K5YmnI93zJd1DyEfOppzl_PLzfFVWX6pqygspEjVTbMoY41nKP5DJ4XZEJkwJkRRCpSfk1PuHqJF5oSbk3wIaZ1oIxg7U9vQOArrkG3js6K2p06S08dLR6zX-x9VuCPcYTEsXpkFHg_0DLtL3NtiYAuvdyNV_TXeI_FWXnsLQ0bKmvXV0OXQ2wtw4erOFtQk7utw8OvuEGxzCOTnuYe3x4gXPyM9FdVv-SK7q78tyfpWAYDIkkmcgmplSmWq5FBILjrMC81w2iFnRZ23GhGIt8qxXCEyBbFqEVORSQKc6cUY-7XNj8-8t-qAf7NYNsVKnKZNZmoqCR9XXvap11nuHvX50ZgNupznT4wJajwvoqtLjt_X4bf2yQDTnezP4Ft_iX53vG58Bxz2LCA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Chawengkijwanich, Chamorn</creator><creator>Pokhum, Chonlada</creator><creator>Srisitthiratkul, Chutima</creator><creator>Subjalearndee, Nakarin</creator><creator>Pongsorrarith, Voraluck</creator><creator>Yaipimai, Wittaya</creator><creator>Phanomkate, Nipon</creator><creator>Intasanta, Varol</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20190601</creationdate><title>Fabrication of Water-Based TiO2-Coated Pleated Synthetic Fiber toward Photocatalytic Oxidation of VOCs and CO for Indoor Air Quality Improvement</title><author>Chawengkijwanich, Chamorn ; Pokhum, Chonlada ; Srisitthiratkul, Chutima ; Subjalearndee, Nakarin ; Pongsorrarith, Voraluck ; Yaipimai, Wittaya ; Phanomkate, Nipon ; Intasanta, Varol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a304t-415a3b87757c1434e91e89e664bee59f5c50370ce15f7ea07a4bcea23643ad7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air flow</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Benzene</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Coating effects</topic><topic>Coatings</topic><topic>Exhaust gases</topic><topic>Fabrication</topic><topic>Fibers</topic><topic>Fibrous structure</topic><topic>Field tests</topic><topic>Gases</topic><topic>Hydrocarbons</topic><topic>Indoor air pollution</topic><topic>Indoor air quality</topic><topic>Indoor environments</topic><topic>Mitigation</topic><topic>Motorcycles</topic><topic>Nanoparticles</topic><topic>Organic compounds</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photooxidation</topic><topic>Pollutants</topic><topic>Pollution control</topic><topic>Quality control</topic><topic>Scanning electron microscopy</topic><topic>Synthetic fibers</topic><topic>Technical Papers</topic><topic>Titanium dioxide</topic><topic>Toluene</topic><topic>Ultraviolet radiation</topic><topic>Vehicle emissions</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chawengkijwanich, Chamorn</creatorcontrib><creatorcontrib>Pokhum, Chonlada</creatorcontrib><creatorcontrib>Srisitthiratkul, Chutima</creatorcontrib><creatorcontrib>Subjalearndee, Nakarin</creatorcontrib><creatorcontrib>Pongsorrarith, Voraluck</creatorcontrib><creatorcontrib>Yaipimai, Wittaya</creatorcontrib><creatorcontrib>Phanomkate, Nipon</creatorcontrib><creatorcontrib>Intasanta, Varol</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chawengkijwanich, Chamorn</au><au>Pokhum, Chonlada</au><au>Srisitthiratkul, Chutima</au><au>Subjalearndee, Nakarin</au><au>Pongsorrarith, Voraluck</au><au>Yaipimai, Wittaya</au><au>Phanomkate, Nipon</au><au>Intasanta, Varol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Water-Based TiO2-Coated Pleated Synthetic Fiber toward Photocatalytic Oxidation of VOCs and CO for Indoor Air Quality Improvement</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>145</volume><issue>6</issue><issn>0733-9372</issn><eissn>1943-7870</eissn><abstract>AbstractWhile titanium dioxide (TiO2) is highly regarded as one of the most promising catalysts for air-pollution mitigation, its practical use has been challenging due to structural complexity, process scalability, and high cost of existing fabrication methods. In this study, a facile spray-coating method is employed for fabrication of a TiO2-coated filter, with fibrous structure allowing for satisfactory airflow, sufficient pollutant–catalyst interactions, and reusability. Scanning electron microscopy (SEM) analysis shows that TiO2 nanoparticles were immobilized firmly on the surface of the membrane’s fibers. Energy dispersive X-ray (EDX) analysis reveals a homogeneous layer of TiO2 nanoparticles on the pleated washable synthetic (PWS) fibers. The photocatalytic oxidations of volatile organic compounds (VOCs) and carbon monoxide (CO) are analyzed in both the laboratory and field tests. TiO2-coated PWS filter membrane (60×60×5 cm) shows higher benzene and toluene removal efficiency (approximately 80%–86%) under UV radiation than that in the dark (less than 10%). This result indicates that photocatalytic oxidation on the surface of TiO2-coated PWS filter membrane contributes greatly to benzene and toluene degradation. The corresponding pilot-scale photocatalytic air filtration unit shows ethylene reduction rate of 1.59±0.52 ppm min−1 in a 45 m3 postharvest storage room. In a demonstrative elimination of automotive exhaust gases, the TiO2 coated PWS filter membrane shows a 16% decrease in CO generated from a motorcycle. This study shows the potential use of the cost-effective TiO2-coated filter membrane for indoor air quality improvement.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EE.1943-7870.0001521</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9372 |
ispartof | Journal of environmental engineering (New York, N.Y.), 2019-06, Vol.145 (6) |
issn | 0733-9372 1943-7870 |
language | eng |
recordid | cdi_proquest_journals_2204522391 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Air flow Air pollution Air quality Benzene Carbon monoxide Catalysis Catalysts Coating effects Coatings Exhaust gases Fabrication Fibers Fibrous structure Field tests Gases Hydrocarbons Indoor air pollution Indoor air quality Indoor environments Mitigation Motorcycles Nanoparticles Organic compounds Oxidation Photocatalysis Photooxidation Pollutants Pollution control Quality control Scanning electron microscopy Synthetic fibers Technical Papers Titanium dioxide Toluene Ultraviolet radiation Vehicle emissions VOCs Volatile organic compounds Water pollution |
title | Fabrication of Water-Based TiO2-Coated Pleated Synthetic Fiber toward Photocatalytic Oxidation of VOCs and CO for Indoor Air Quality Improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Water-Based%20TiO2-Coated%20Pleated%20Synthetic%20Fiber%20toward%20Photocatalytic%20Oxidation%20of%20VOCs%20and%20CO%20for%20Indoor%20Air%20Quality%20Improvement&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Chawengkijwanich,%20Chamorn&rft.date=2019-06-01&rft.volume=145&rft.issue=6&rft.issn=0733-9372&rft.eissn=1943-7870&rft_id=info:doi/10.1061/(ASCE)EE.1943-7870.0001521&rft_dat=%3Cproquest_cross%3E2204522391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204522391&rft_id=info:pmid/&rfr_iscdi=true |