Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles

We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2 , symbols and with C 1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-04, Vol.367 (2), p.351-416
Hauptverfasser: Díaz, L. J., Gelfert, K., Rams, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 2
container_start_page 351
container_title Communications in mathematical physics
container_volume 367
creator Díaz, L. J.
Gelfert, K.
Rams, M.
description We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2 , symbols and with C 1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of 2 × 2 matrix cocycles and our results apply to an open and dense subset of elliptic SL ( 2 , R ) cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent.
doi_str_mv 10.1007/s00220-019-03412-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2204324598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204324598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYP-rGR1SFh1QBUuFsOY4DLWls7ATIv8dQJG6cVtqdmdV8CJ1SOKcA84sEwBgQoIoAF5QRtYcmVHBGQFG5jyYAFAiXVB6io5Q2AKCYlBNkyq6PPox4FZzt47DFvsHL0YSh8--4_Ay-c12fcOMjvvPdyxhcrHy7tnjVu4BXr-6DPERfDzaLTFfjsm3Xoc_3hbejbV06RgeNaZM7-Z1T9HRVPi5uyPL--nZxuSSWU9UTUQgnmeTcKMqEMFYaVxsnTC15pUzN5vPcyyjOCsmYpVWTt7PcQ8qi4qbhU3S2yw3Rvw0u9Xrjh9jllzqjySjETBVZxXYqG31K0TU6xPXWxFFT0N8o9Q6lzij1D0qtsonvTCmLu2cX_6L_cX0BR9R3Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204324598</pqid></control><display><type>article</type><title>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Díaz, L. J. ; Gelfert, K. ; Rams, M.</creator><creatorcontrib>Díaz, L. J. ; Gelfert, K. ; Rams, M.</creatorcontrib><description>We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2 , symbols and with C 1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of 2 × 2 matrix cocycles and our results apply to an open and dense subset of elliptic SL ( 2 , R ) cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03412-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chaos theory ; Classical and Quantum Gravitation ; Complex Systems ; Continuity (mathematics) ; Entropy ; Ergodic processes ; Fractal analysis ; Isomorphism ; Liapunov exponents ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical ; Topology ; Variational principles</subject><ispartof>Communications in mathematical physics, 2019-04, Vol.367 (2), p.351-416</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</citedby><cites>FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</cites><orcidid>0000-0002-4631-7201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03412-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03412-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Díaz, L. J.</creatorcontrib><creatorcontrib>Gelfert, K.</creatorcontrib><creatorcontrib>Rams, M.</creatorcontrib><title>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2 , symbols and with C 1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of 2 × 2 matrix cocycles and our results apply to an open and dense subset of elliptic SL ( 2 , R ) cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent.</description><subject>Chaos theory</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Continuity (mathematics)</subject><subject>Entropy</subject><subject>Ergodic processes</subject><subject>Fractal analysis</subject><subject>Isomorphism</subject><subject>Liapunov exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Topology</subject><subject>Variational principles</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYP-rGR1SFh1QBUuFsOY4DLWls7ATIv8dQJG6cVtqdmdV8CJ1SOKcA84sEwBgQoIoAF5QRtYcmVHBGQFG5jyYAFAiXVB6io5Q2AKCYlBNkyq6PPox4FZzt47DFvsHL0YSh8--4_Ay-c12fcOMjvvPdyxhcrHy7tnjVu4BXr-6DPERfDzaLTFfjsm3Xoc_3hbejbV06RgeNaZM7-Z1T9HRVPi5uyPL--nZxuSSWU9UTUQgnmeTcKMqEMFYaVxsnTC15pUzN5vPcyyjOCsmYpVWTt7PcQ8qi4qbhU3S2yw3Rvw0u9Xrjh9jllzqjySjETBVZxXYqG31K0TU6xPXWxFFT0N8o9Q6lzij1D0qtsonvTCmLu2cX_6L_cX0BR9R3Fg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Díaz, L. J.</creator><creator>Gelfert, K.</creator><creator>Rams, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4631-7201</orcidid></search><sort><creationdate>20190401</creationdate><title>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</title><author>Díaz, L. J. ; Gelfert, K. ; Rams, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chaos theory</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Continuity (mathematics)</topic><topic>Entropy</topic><topic>Ergodic processes</topic><topic>Fractal analysis</topic><topic>Isomorphism</topic><topic>Liapunov exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Topology</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, L. J.</creatorcontrib><creatorcontrib>Gelfert, K.</creatorcontrib><creatorcontrib>Rams, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, L. J.</au><au>Gelfert, K.</au><au>Rams, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>367</volume><issue>2</issue><spage>351</spage><epage>416</epage><pages>351-416</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2 , symbols and with C 1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of 2 × 2 matrix cocycles and our results apply to an open and dense subset of elliptic SL ( 2 , R ) cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03412-9</doi><tpages>66</tpages><orcidid>https://orcid.org/0000-0002-4631-7201</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-04, Vol.367 (2), p.351-416
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2204324598
source SpringerLink Journals - AutoHoldings
subjects Chaos theory
Classical and Quantum Gravitation
Complex Systems
Continuity (mathematics)
Entropy
Ergodic processes
Fractal analysis
Isomorphism
Liapunov exponents
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
Topology
Variational principles
title Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Spectrum%20of%20Lyapunov%20Exponents%20for%20Nonhyperbolic%20Step%20Skew-Products%20and%20Elliptic%20Cocycles&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=D%C3%ADaz,%20L.%20J.&rft.date=2019-04-01&rft.volume=367&rft.issue=2&rft.spage=351&rft.epage=416&rft.pages=351-416&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03412-9&rft_dat=%3Cproquest_cross%3E2204324598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204324598&rft_id=info:pmid/&rfr_iscdi=true