Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles
We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2 , symbols and with C 1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative,...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2019-04, Vol.367 (2), p.351-416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 2 |
container_start_page | 351 |
container_title | Communications in mathematical physics |
container_volume | 367 |
creator | Díaz, L. J. Gelfert, K. Rams, M. |
description | We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of
N
,
N
≥
2
, symbols and with
C
1
diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of
2
×
2
matrix cocycles and our results apply to an open and dense subset of elliptic
SL
(
2
,
R
)
cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent. |
doi_str_mv | 10.1007/s00220-019-03412-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2204324598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204324598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYP-rGR1SFh1QBUuFsOY4DLWls7ATIv8dQJG6cVtqdmdV8CJ1SOKcA84sEwBgQoIoAF5QRtYcmVHBGQFG5jyYAFAiXVB6io5Q2AKCYlBNkyq6PPox4FZzt47DFvsHL0YSh8--4_Ay-c12fcOMjvvPdyxhcrHy7tnjVu4BXr-6DPERfDzaLTFfjsm3Xoc_3hbejbV06RgeNaZM7-Z1T9HRVPi5uyPL--nZxuSSWU9UTUQgnmeTcKMqEMFYaVxsnTC15pUzN5vPcyyjOCsmYpVWTt7PcQ8qi4qbhU3S2yw3Rvw0u9Xrjh9jllzqjySjETBVZxXYqG31K0TU6xPXWxFFT0N8o9Q6lzij1D0qtsonvTCmLu2cX_6L_cX0BR9R3Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204324598</pqid></control><display><type>article</type><title>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Díaz, L. J. ; Gelfert, K. ; Rams, M.</creator><creatorcontrib>Díaz, L. J. ; Gelfert, K. ; Rams, M.</creatorcontrib><description>We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of
N
,
N
≥
2
, symbols and with
C
1
diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of
2
×
2
matrix cocycles and our results apply to an open and dense subset of elliptic
SL
(
2
,
R
)
cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03412-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chaos theory ; Classical and Quantum Gravitation ; Complex Systems ; Continuity (mathematics) ; Entropy ; Ergodic processes ; Fractal analysis ; Isomorphism ; Liapunov exponents ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical ; Topology ; Variational principles</subject><ispartof>Communications in mathematical physics, 2019-04, Vol.367 (2), p.351-416</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</citedby><cites>FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</cites><orcidid>0000-0002-4631-7201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03412-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03412-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Díaz, L. J.</creatorcontrib><creatorcontrib>Gelfert, K.</creatorcontrib><creatorcontrib>Rams, M.</creatorcontrib><title>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of
N
,
N
≥
2
, symbols and with
C
1
diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of
2
×
2
matrix cocycles and our results apply to an open and dense subset of elliptic
SL
(
2
,
R
)
cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent.</description><subject>Chaos theory</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Continuity (mathematics)</subject><subject>Entropy</subject><subject>Ergodic processes</subject><subject>Fractal analysis</subject><subject>Isomorphism</subject><subject>Liapunov exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><subject>Topology</subject><subject>Variational principles</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mxYP-rGR1SFh1QBUuFsOY4DLWls7ATIv8dQJG6cVtqdmdV8CJ1SOKcA84sEwBgQoIoAF5QRtYcmVHBGQFG5jyYAFAiXVB6io5Q2AKCYlBNkyq6PPox4FZzt47DFvsHL0YSh8--4_Ay-c12fcOMjvvPdyxhcrHy7tnjVu4BXr-6DPERfDzaLTFfjsm3Xoc_3hbejbV06RgeNaZM7-Z1T9HRVPi5uyPL--nZxuSSWU9UTUQgnmeTcKMqEMFYaVxsnTC15pUzN5vPcyyjOCsmYpVWTt7PcQ8qi4qbhU3S2yw3Rvw0u9Xrjh9jllzqjySjETBVZxXYqG31K0TU6xPXWxFFT0N8o9Q6lzij1D0qtsonvTCmLu2cX_6L_cX0BR9R3Fg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Díaz, L. J.</creator><creator>Gelfert, K.</creator><creator>Rams, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4631-7201</orcidid></search><sort><creationdate>20190401</creationdate><title>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</title><author>Díaz, L. J. ; Gelfert, K. ; Rams, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-484e62633a91244ac6aedae4ad63b9ad277412a9328622c1bfb9a5000668b3af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chaos theory</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Continuity (mathematics)</topic><topic>Entropy</topic><topic>Ergodic processes</topic><topic>Fractal analysis</topic><topic>Isomorphism</topic><topic>Liapunov exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><topic>Topology</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, L. J.</creatorcontrib><creatorcontrib>Gelfert, K.</creatorcontrib><creatorcontrib>Rams, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, L. J.</au><au>Gelfert, K.</au><au>Rams, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>367</volume><issue>2</issue><spage>351</spage><epage>416</epage><pages>351-416</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of
N
,
N
≥
2
, symbols and with
C
1
diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. Examples of such systems arise from the projective action of
2
×
2
matrix cocycles and our results apply to an open and dense subset of elliptic
SL
(
2
,
R
)
cocycles. We derive a multifractal analysis for the topological entropy of the level sets of Lyapunov exponent. The results are formulated in terms of Legendre–Fenchel transforms of restricted variational pressures, considering hyperbolic ergodic measures only, as well as in terms of restricted variational principles of entropies of ergodic measures with a given exponent. We show that the entropy of the level sets is a continuous function of the Lyapunov exponent. The level set of the zero exponent has positive, but not maximal, topological entropy. Under the additional assumption of proximality, as for example for skew-products arising from certain matrix cocycles, there exist two unique ergodic measures of maximal entropy, one with negative and one with positive fiber Lyapunov exponent.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03412-9</doi><tpages>66</tpages><orcidid>https://orcid.org/0000-0002-4631-7201</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2019-04, Vol.367 (2), p.351-416 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2204324598 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chaos theory Classical and Quantum Gravitation Complex Systems Continuity (mathematics) Entropy Ergodic processes Fractal analysis Isomorphism Liapunov exponents Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical Topology Variational principles |
title | Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Spectrum%20of%20Lyapunov%20Exponents%20for%20Nonhyperbolic%20Step%20Skew-Products%20and%20Elliptic%20Cocycles&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=D%C3%ADaz,%20L.%20J.&rft.date=2019-04-01&rft.volume=367&rft.issue=2&rft.spage=351&rft.epage=416&rft.pages=351-416&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03412-9&rft_dat=%3Cproquest_cross%3E2204324598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204324598&rft_id=info:pmid/&rfr_iscdi=true |