From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses
The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches...
Gespeichert in:
Veröffentlicht in: | Granular matter 2019-11, Vol.21 (4), p.1-8, Article 99 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Granular matter |
container_volume | 21 |
creator | Long, Alan A. Denisov, Dmitry V. Schall, Peter Hufnagel, Todd C. Gu, Xiaojun Wright, Wendelin J. Dahmen, Karin A. |
description | The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches by computing the temporal profile or “shape” of each one, i.e., the time derivative of the stress-time series during each avalanche. We then compare the experimental statistics and dynamics of these shapes in granular media and bulk metallic glasses. We complement the experiments with a mean-field model that predicts a critical size beyond which avalanches turn into large runaway events. We find that this transition is reflected in a characteristic change of the peak width of the avalanche profile from broad to narrow, and we introduce a new metric for characterizing this dynamic change. The comparison of the two systems points to the same deformation mechanism in both metallic glasses and granular materials. |
doi_str_mv | 10.1007/s10035-019-0946-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_220380653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1326814621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a99cd21f1a0c6113606f5a68f54d3470f6c3d0f9f1f2061801b39619aef408df3</originalsourceid><addsrcrecordid>eNp1kMFKw0AQhoMoWKsP4G3xHp3JJtvEmxSrQsGLnpfpZrdNTZo4u7Hk7U1pwZOXmTl8_z_wRdEtwj0CzB78OGUWAxYxFKmKh7NogqlM45mS6vx0Z5DgZXTl_RYAswJnk6hbcNsIw1WoDNViZTf0U7UsQisMBfKB225TGcH9jvY0-Edh2qYjrnZr4TeW2JZizbTra2LRULBcUe3FvgobserrL9HYQHU9Nqxr8t766-jCjYS9Oe1p9Ll4_pi_xsv3l7f50zI2MstDTEVhygQdEhiFKBUol5HKXZaWMp2BU0aW4AqHLgGFOeBKFgoLsi6FvHRyGt0deztuv3vrg962Pe_GlzpJQOagMjlCeIQMt96zdbrjqiEeNII-eNVHr3r0qg9e9TBmkmPGdwcLlv-K_w_9AlBMfWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220380653</pqid></control><display><type>article</type><title>From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses</title><source>SpringerLink Journals - AutoHoldings</source><creator>Long, Alan A. ; Denisov, Dmitry V. ; Schall, Peter ; Hufnagel, Todd C. ; Gu, Xiaojun ; Wright, Wendelin J. ; Dahmen, Karin A.</creator><creatorcontrib>Long, Alan A. ; Denisov, Dmitry V. ; Schall, Peter ; Hufnagel, Todd C. ; Gu, Xiaojun ; Wright, Wendelin J. ; Dahmen, Karin A.</creatorcontrib><description>The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches by computing the temporal profile or “shape” of each one, i.e., the time derivative of the stress-time series during each avalanche. We then compare the experimental statistics and dynamics of these shapes in granular media and bulk metallic glasses. We complement the experiments with a mean-field model that predicts a critical size beyond which avalanches turn into large runaway events. We find that this transition is reflected in a characteristic change of the peak width of the avalanche profile from broad to narrow, and we introduce a new metric for characterizing this dynamic change. The comparison of the two systems points to the same deformation mechanism in both metallic glasses and granular materials.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-019-0946-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amorphous materials ; Avalanches ; Complex Fluids and Microfluidics ; Deformation mechanisms ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Experiments ; Foundations ; Geoengineering ; Grain ; Granular materials ; Granular media ; Heat and Mass Transfer ; Hydraulics ; In Memoriam of Robert P. Behringer ; Industrial Chemistry/Chemical Engineering ; late Editor in Chief of Granular Matter ; Materials Science ; Matter & antimatter ; Mechanics ; Metallic glasses ; Original Paper ; Particle physics ; Physics ; Physics and Astronomy ; Soft and Granular Matter</subject><ispartof>Granular matter, 2019-11, Vol.21 (4), p.1-8, Article 99</ispartof><rights>The Author(s) 2019</rights><rights>Granular Matter is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a99cd21f1a0c6113606f5a68f54d3470f6c3d0f9f1f2061801b39619aef408df3</citedby><cites>FETCH-LOGICAL-c358t-a99cd21f1a0c6113606f5a68f54d3470f6c3d0f9f1f2061801b39619aef408df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-019-0946-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-019-0946-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Long, Alan A.</creatorcontrib><creatorcontrib>Denisov, Dmitry V.</creatorcontrib><creatorcontrib>Schall, Peter</creatorcontrib><creatorcontrib>Hufnagel, Todd C.</creatorcontrib><creatorcontrib>Gu, Xiaojun</creatorcontrib><creatorcontrib>Wright, Wendelin J.</creatorcontrib><creatorcontrib>Dahmen, Karin A.</creatorcontrib><title>From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches by computing the temporal profile or “shape” of each one, i.e., the time derivative of the stress-time series during each avalanche. We then compare the experimental statistics and dynamics of these shapes in granular media and bulk metallic glasses. We complement the experiments with a mean-field model that predicts a critical size beyond which avalanches turn into large runaway events. We find that this transition is reflected in a characteristic change of the peak width of the avalanche profile from broad to narrow, and we introduce a new metric for characterizing this dynamic change. The comparison of the two systems points to the same deformation mechanism in both metallic glasses and granular materials.</description><subject>Amorphous materials</subject><subject>Avalanches</subject><subject>Complex Fluids and Microfluidics</subject><subject>Deformation mechanisms</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Experiments</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Grain</subject><subject>Granular materials</subject><subject>Granular media</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>In Memoriam of Robert P. Behringer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>late Editor in Chief of Granular Matter</subject><subject>Materials Science</subject><subject>Matter & antimatter</subject><subject>Mechanics</subject><subject>Metallic glasses</subject><subject>Original Paper</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Soft and Granular Matter</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMFKw0AQhoMoWKsP4G3xHp3JJtvEmxSrQsGLnpfpZrdNTZo4u7Hk7U1pwZOXmTl8_z_wRdEtwj0CzB78OGUWAxYxFKmKh7NogqlM45mS6vx0Z5DgZXTl_RYAswJnk6hbcNsIw1WoDNViZTf0U7UsQisMBfKB225TGcH9jvY0-Edh2qYjrnZr4TeW2JZizbTra2LRULBcUe3FvgobserrL9HYQHU9Nqxr8t766-jCjYS9Oe1p9Ll4_pi_xsv3l7f50zI2MstDTEVhygQdEhiFKBUol5HKXZaWMp2BU0aW4AqHLgGFOeBKFgoLsi6FvHRyGt0deztuv3vrg962Pe_GlzpJQOagMjlCeIQMt96zdbrjqiEeNII-eNVHr3r0qg9e9TBmkmPGdwcLlv-K_w_9AlBMfWc</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Long, Alan A.</creator><creator>Denisov, Dmitry V.</creator><creator>Schall, Peter</creator><creator>Hufnagel, Todd C.</creator><creator>Gu, Xiaojun</creator><creator>Wright, Wendelin J.</creator><creator>Dahmen, Karin A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20191101</creationdate><title>From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses</title><author>Long, Alan A. ; Denisov, Dmitry V. ; Schall, Peter ; Hufnagel, Todd C. ; Gu, Xiaojun ; Wright, Wendelin J. ; Dahmen, Karin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a99cd21f1a0c6113606f5a68f54d3470f6c3d0f9f1f2061801b39619aef408df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphous materials</topic><topic>Avalanches</topic><topic>Complex Fluids and Microfluidics</topic><topic>Deformation mechanisms</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Experiments</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Grain</topic><topic>Granular materials</topic><topic>Granular media</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>In Memoriam of Robert P. Behringer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>late Editor in Chief of Granular Matter</topic><topic>Materials Science</topic><topic>Matter & antimatter</topic><topic>Mechanics</topic><topic>Metallic glasses</topic><topic>Original Paper</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Alan A.</creatorcontrib><creatorcontrib>Denisov, Dmitry V.</creatorcontrib><creatorcontrib>Schall, Peter</creatorcontrib><creatorcontrib>Hufnagel, Todd C.</creatorcontrib><creatorcontrib>Gu, Xiaojun</creatorcontrib><creatorcontrib>Wright, Wendelin J.</creatorcontrib><creatorcontrib>Dahmen, Karin A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Alan A.</au><au>Denisov, Dmitry V.</au><au>Schall, Peter</au><au>Hufnagel, Todd C.</au><au>Gu, Xiaojun</au><au>Wright, Wendelin J.</au><au>Dahmen, Karin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>99</artnum><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>The flow of granular materials and metallic glasses is governed by strongly correlated, avalanche-like deformation. Recent comparisons focused on the scaling regimes of the small avalanches, where strong similarities were found in the two systems. Here, we investigate the regime of large avalanches by computing the temporal profile or “shape” of each one, i.e., the time derivative of the stress-time series during each avalanche. We then compare the experimental statistics and dynamics of these shapes in granular media and bulk metallic glasses. We complement the experiments with a mean-field model that predicts a critical size beyond which avalanches turn into large runaway events. We find that this transition is reflected in a characteristic change of the peak width of the avalanche profile from broad to narrow, and we introduce a new metric for characterizing this dynamic change. The comparison of the two systems points to the same deformation mechanism in both metallic glasses and granular materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-019-0946-y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-5021 |
ispartof | Granular matter, 2019-11, Vol.21 (4), p.1-8, Article 99 |
issn | 1434-5021 1434-7636 |
language | eng |
recordid | cdi_proquest_journals_220380653 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amorphous materials Avalanches Complex Fluids and Microfluidics Deformation mechanisms Engineering Fluid Dynamics Engineering Thermodynamics Experiments Foundations Geoengineering Grain Granular materials Granular media Heat and Mass Transfer Hydraulics In Memoriam of Robert P. Behringer Industrial Chemistry/Chemical Engineering late Editor in Chief of Granular Matter Materials Science Matter & antimatter Mechanics Metallic glasses Original Paper Particle physics Physics Physics and Astronomy Soft and Granular Matter |
title | From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20critical%20behavior%20to%20catastrophic%20runaways:%20comparing%20sheared%20granular%20materials%20with%20bulk%20metallic%20glasses&rft.jtitle=Granular%20matter&rft.au=Long,%20Alan%20A.&rft.date=2019-11-01&rft.volume=21&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=99&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-019-0946-y&rft_dat=%3Cproquest_cross%3E1326814621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220380653&rft_id=info:pmid/&rfr_iscdi=true |