Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures

The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2019-03, Vol.75 (3), p.1038-1050
Hauptverfasser: Orts, F., Filatovas, E., Ortega, G., Kurasova, O., Garzón, E. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1050
container_issue 3
container_start_page 1038
container_title The Journal of supercomputing
container_volume 75
creator Orts, F.
Filatovas, E.
Ortega, G.
Kurasova, O.
Garzón, E. M.
description The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.
doi_str_mv 10.1007/s11227-018-2285-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203796329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203796329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8ldgeq4pCJVAHYMVyHKd1ldjFTlD770lVJCamt9xzdd8B4Jbge4KxeMiEUCoQJhJRKgu0PwMTUgiGMJf8HEywohjJgtNLcJXzFmPMmWAT8Lnsdil--7CG_cZBF1xaH6BrGm-9C_YAYwPfXmfz1QI2McFuaHtf-86F7GMwLczWtEc4BtjF2qUATbIb3zvbD8nla3DRmDa7m987BR-Lx_f5M3pZPS3nsxdkGSl7RCqqKmxqa61gTNKqoRXnhDOpqrIsreCuKh210hBeqdpKZpS0dWGV4ARbzqbg7tQ7PvM1uNzrbRzSODBrSjETqmRUjSlyStkUc06u0bvkO5MOmmB91KhPGvWoUR816v3I0BOTx2xYu_TX_D_0AwYjdqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203796329</pqid></control><display><type>article</type><title>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</title><source>Springer Nature - Complete Springer Journals</source><creator>Orts, F. ; Filatovas, E. ; Ortega, G. ; Kurasova, O. ; Garzón, E. M.</creator><creatorcontrib>Orts, F. ; Filatovas, E. ; Ortega, G. ; Kurasova, O. ; Garzón, E. M.</creatorcontrib><description>The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-018-2285-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Data management ; Data processing ; Energy efficiency ; Graphics processing units ; Heuristic methods ; Interpreters ; Multidimensional methods ; Platforms ; Power efficiency ; Processor Architectures ; Programming Languages ; Reduction ; Scaling</subject><ispartof>The Journal of supercomputing, 2019-03, Vol.75 (3), p.1038-1050</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</citedby><cites>FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</cites><orcidid>0000-0002-6563-2717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-018-2285-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-018-2285-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Orts, F.</creatorcontrib><creatorcontrib>Filatovas, E.</creatorcontrib><creatorcontrib>Ortega, G.</creatorcontrib><creatorcontrib>Kurasova, O.</creatorcontrib><creatorcontrib>Garzón, E. M.</creatorcontrib><title>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data management</subject><subject>Data processing</subject><subject>Energy efficiency</subject><subject>Graphics processing units</subject><subject>Heuristic methods</subject><subject>Interpreters</subject><subject>Multidimensional methods</subject><subject>Platforms</subject><subject>Power efficiency</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Reduction</subject><subject>Scaling</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8ldgeq4pCJVAHYMVyHKd1ldjFTlD770lVJCamt9xzdd8B4Jbge4KxeMiEUCoQJhJRKgu0PwMTUgiGMJf8HEywohjJgtNLcJXzFmPMmWAT8Lnsdil--7CG_cZBF1xaH6BrGm-9C_YAYwPfXmfz1QI2McFuaHtf-86F7GMwLczWtEc4BtjF2qUATbIb3zvbD8nla3DRmDa7m987BR-Lx_f5M3pZPS3nsxdkGSl7RCqqKmxqa61gTNKqoRXnhDOpqrIsreCuKh210hBeqdpKZpS0dWGV4ARbzqbg7tQ7PvM1uNzrbRzSODBrSjETqmRUjSlyStkUc06u0bvkO5MOmmB91KhPGvWoUR816v3I0BOTx2xYu_TX_D_0AwYjdqA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Orts, F.</creator><creator>Filatovas, E.</creator><creator>Ortega, G.</creator><creator>Kurasova, O.</creator><creator>Garzón, E. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6563-2717</orcidid></search><sort><creationdate>20190301</creationdate><title>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</title><author>Orts, F. ; Filatovas, E. ; Ortega, G. ; Kurasova, O. ; Garzón, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data management</topic><topic>Data processing</topic><topic>Energy efficiency</topic><topic>Graphics processing units</topic><topic>Heuristic methods</topic><topic>Interpreters</topic><topic>Multidimensional methods</topic><topic>Platforms</topic><topic>Power efficiency</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Reduction</topic><topic>Scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orts, F.</creatorcontrib><creatorcontrib>Filatovas, E.</creatorcontrib><creatorcontrib>Ortega, G.</creatorcontrib><creatorcontrib>Kurasova, O.</creatorcontrib><creatorcontrib>Garzón, E. M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orts, F.</au><au>Filatovas, E.</au><au>Ortega, G.</au><au>Kurasova, O.</au><au>Garzón, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>75</volume><issue>3</issue><spage>1038</spage><epage>1050</epage><pages>1038-1050</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-018-2285-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6563-2717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2019-03, Vol.75 (3), p.1038-1050
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2203796329
source Springer Nature - Complete Springer Journals
subjects Algorithms
Compilers
Computer Science
Data management
Data processing
Energy efficiency
Graphics processing units
Heuristic methods
Interpreters
Multidimensional methods
Platforms
Power efficiency
Processor Architectures
Programming Languages
Reduction
Scaling
title Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20energy%20efficiency%20of%20SMACOF%20for%20multidimensional%20scaling%20on%20modern%20architectures&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Orts,%20F.&rft.date=2019-03-01&rft.volume=75&rft.issue=3&rft.spage=1038&rft.epage=1050&rft.pages=1038-1050&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-018-2285-x&rft_dat=%3Cproquest_cross%3E2203796329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203796329&rft_id=info:pmid/&rfr_iscdi=true