Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures
The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant comput...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2019-03, Vol.75 (3), p.1038-1050 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | 3 |
container_start_page | 1038 |
container_title | The Journal of supercomputing |
container_volume | 75 |
creator | Orts, F. Filatovas, E. Ortega, G. Kurasova, O. Garzón, E. M. |
description | The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation. |
doi_str_mv | 10.1007/s11227-018-2285-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203796329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203796329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8ldgeq4pCJVAHYMVyHKd1ldjFTlD770lVJCamt9xzdd8B4Jbge4KxeMiEUCoQJhJRKgu0PwMTUgiGMJf8HEywohjJgtNLcJXzFmPMmWAT8Lnsdil--7CG_cZBF1xaH6BrGm-9C_YAYwPfXmfz1QI2McFuaHtf-86F7GMwLczWtEc4BtjF2qUATbIb3zvbD8nla3DRmDa7m987BR-Lx_f5M3pZPS3nsxdkGSl7RCqqKmxqa61gTNKqoRXnhDOpqrIsreCuKh210hBeqdpKZpS0dWGV4ARbzqbg7tQ7PvM1uNzrbRzSODBrSjETqmRUjSlyStkUc06u0bvkO5MOmmB91KhPGvWoUR816v3I0BOTx2xYu_TX_D_0AwYjdqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203796329</pqid></control><display><type>article</type><title>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</title><source>Springer Nature - Complete Springer Journals</source><creator>Orts, F. ; Filatovas, E. ; Ortega, G. ; Kurasova, O. ; Garzón, E. M.</creator><creatorcontrib>Orts, F. ; Filatovas, E. ; Ortega, G. ; Kurasova, O. ; Garzón, E. M.</creatorcontrib><description>The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-018-2285-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Data management ; Data processing ; Energy efficiency ; Graphics processing units ; Heuristic methods ; Interpreters ; Multidimensional methods ; Platforms ; Power efficiency ; Processor Architectures ; Programming Languages ; Reduction ; Scaling</subject><ispartof>The Journal of supercomputing, 2019-03, Vol.75 (3), p.1038-1050</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</citedby><cites>FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</cites><orcidid>0000-0002-6563-2717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-018-2285-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-018-2285-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Orts, F.</creatorcontrib><creatorcontrib>Filatovas, E.</creatorcontrib><creatorcontrib>Ortega, G.</creatorcontrib><creatorcontrib>Kurasova, O.</creatorcontrib><creatorcontrib>Garzón, E. M.</creatorcontrib><title>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data management</subject><subject>Data processing</subject><subject>Energy efficiency</subject><subject>Graphics processing units</subject><subject>Heuristic methods</subject><subject>Interpreters</subject><subject>Multidimensional methods</subject><subject>Platforms</subject><subject>Power efficiency</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Reduction</subject><subject>Scaling</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8ldgeq4pCJVAHYMVyHKd1ldjFTlD770lVJCamt9xzdd8B4Jbge4KxeMiEUCoQJhJRKgu0PwMTUgiGMJf8HEywohjJgtNLcJXzFmPMmWAT8Lnsdil--7CG_cZBF1xaH6BrGm-9C_YAYwPfXmfz1QI2McFuaHtf-86F7GMwLczWtEc4BtjF2qUATbIb3zvbD8nla3DRmDa7m987BR-Lx_f5M3pZPS3nsxdkGSl7RCqqKmxqa61gTNKqoRXnhDOpqrIsreCuKh210hBeqdpKZpS0dWGV4ARbzqbg7tQ7PvM1uNzrbRzSODBrSjETqmRUjSlyStkUc06u0bvkO5MOmmB91KhPGvWoUR816v3I0BOTx2xYu_TX_D_0AwYjdqA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Orts, F.</creator><creator>Filatovas, E.</creator><creator>Ortega, G.</creator><creator>Kurasova, O.</creator><creator>Garzón, E. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6563-2717</orcidid></search><sort><creationdate>20190301</creationdate><title>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</title><author>Orts, F. ; Filatovas, E. ; Ortega, G. ; Kurasova, O. ; Garzón, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1b29b0adccc73382bf2b4414389b666c74eb6e2c8a14b9dc83a98cd5c97410c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data management</topic><topic>Data processing</topic><topic>Energy efficiency</topic><topic>Graphics processing units</topic><topic>Heuristic methods</topic><topic>Interpreters</topic><topic>Multidimensional methods</topic><topic>Platforms</topic><topic>Power efficiency</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Reduction</topic><topic>Scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orts, F.</creatorcontrib><creatorcontrib>Filatovas, E.</creatorcontrib><creatorcontrib>Ortega, G.</creatorcontrib><creatorcontrib>Kurasova, O.</creatorcontrib><creatorcontrib>Garzón, E. M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orts, F.</au><au>Filatovas, E.</au><au>Ortega, G.</au><au>Kurasova, O.</au><au>Garzón, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>75</volume><issue>3</issue><spage>1038</spage><epage>1050</epage><pages>1038-1050</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The reduction of the dimensionality is of great interest in the context of big data processing. Multidimensional scaling methods (MDS) are techniques for dimensionality reduction, where data from a high-dimensional space are mapped into a lower-dimensional space. Such methods consume relevant computational resources; therefore, intensive research has been developed to accelerate them. In this work, two efficient parallel versions of the well-known and precise SMACOF algorithm to solve MDS problems have been developed and evaluated on multicore and GPU. To help the user of SMACOF, we provide these parallel versions and a complementary Python code based on a heuristic approach to explore the optimal configuration of the parallel SMACOF algorithm on the available platforms in terms of energy efficiency (GFLOPs/watt). Three platforms, 64 and 12 CPU-cores and a GPU device, have been considered for the experimental evaluation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-018-2285-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6563-2717</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2019-03, Vol.75 (3), p.1038-1050 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2203796329 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Compilers Computer Science Data management Data processing Energy efficiency Graphics processing units Heuristic methods Interpreters Multidimensional methods Platforms Power efficiency Processor Architectures Programming Languages Reduction Scaling |
title | Improving the energy efficiency of SMACOF for multidimensional scaling on modern architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20energy%20efficiency%20of%20SMACOF%20for%20multidimensional%20scaling%20on%20modern%20architectures&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Orts,%20F.&rft.date=2019-03-01&rft.volume=75&rft.issue=3&rft.spage=1038&rft.epage=1050&rft.pages=1038-1050&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-018-2285-x&rft_dat=%3Cproquest_cross%3E2203796329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203796329&rft_id=info:pmid/&rfr_iscdi=true |