Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy

The plastic anisotropy and ductile fracture behavior of an Al–Si–Mg die-cast alloy (AA365-T7, or Aural-2) is probed using a combination of experiments and analysis. The plastic anisotropy is assessed using uniaxial tension, plane-strain tension and disc compression experiments, which are then used t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2019-03, Vol.216 (1), p.101-121
Hauptverfasser: Baral, Madhav, Ha, Jinjin, Korkolis, Yannis P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 101
container_title International journal of fracture
container_volume 216
creator Baral, Madhav
Ha, Jinjin
Korkolis, Yannis P.
description The plastic anisotropy and ductile fracture behavior of an Al–Si–Mg die-cast alloy (AA365-T7, or Aural-2) is probed using a combination of experiments and analysis. The plastic anisotropy is assessed using uniaxial tension, plane-strain tension and disc compression experiments, which are then used to calibrate the Yld2004-3D anisotropic yield criterion. The fracture behavior is investigated using notched tension, central hole and shear specimens, with the latter employing a geometry that was custom-designed for this material. Digital image correlation is used to assess the full strain fields for these experiments. However, fracture is expected to initiate at the through-thickness mid-plane of the specimens and thus it cannot be measured directly from experiments. Instead, the stresses and strains at the onset of fracture are estimated using finite element modeling. The loading path and the resulting fracture locus were found to be sensitive to the yield criterion employed, which underscores the importance of an adequate modeling of plastic anisotropy in ductile fracture studies. Based on the finite element modeling, the fracture locus is represented with three common criteria (Oyane, Johnson–Cook and Hosford–Coulomb), as well as a newly proposed one as the linear combination of the first two. However, beyond that, it is still questionable if all of these experiments are probing the same fracture locus, since the predicted loading paths of notched tension specimens are highly evolving compared to those of central hole and shear ones.
doi_str_mv 10.1007/s10704-019-00345-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203234510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203234510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-19e25cfc44f05c86e3b917f03d5c020ddde44ddf7f0c015c00c84558459983c43</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKuA62jlNeksh8EnIwrqOrR5DBl6usekezE7_8E_9EuMtuDORVXB5Z4q6iJ0SuGcAqiLTEGBIEA1AeBCErqHJlQqTthM8X00Aa5mRAumD9FRzmsA0KoSE3T32NS5jzb2O1y3DrvB9rHxOKTa9kPyeNM538R2hbtQDHjefL5_PMXS7lfYRU9swXHdNN3uGB2Eusn-5HdO0cvV5fPihiwfrm8X8yWxvJI9odozaYMVIoC01czzV01VAO6kBQbOOS-Ec6FIFmjRwFZCylJaV9wKPkVn495t6t4Gn3uz7obUlpOGMeCsvE-huNjosqnLOflgtilu6rQzFMx3ZmbMzJTMzE9mhhaIj1Au5nbl09_qf6gvEpZvgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203234510</pqid></control><display><type>article</type><title>Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy</title><source>Springer Nature - Complete Springer Journals</source><creator>Baral, Madhav ; Ha, Jinjin ; Korkolis, Yannis P.</creator><creatorcontrib>Baral, Madhav ; Ha, Jinjin ; Korkolis, Yannis P.</creatorcontrib><description>The plastic anisotropy and ductile fracture behavior of an Al–Si–Mg die-cast alloy (AA365-T7, or Aural-2) is probed using a combination of experiments and analysis. The plastic anisotropy is assessed using uniaxial tension, plane-strain tension and disc compression experiments, which are then used to calibrate the Yld2004-3D anisotropic yield criterion. The fracture behavior is investigated using notched tension, central hole and shear specimens, with the latter employing a geometry that was custom-designed for this material. Digital image correlation is used to assess the full strain fields for these experiments. However, fracture is expected to initiate at the through-thickness mid-plane of the specimens and thus it cannot be measured directly from experiments. Instead, the stresses and strains at the onset of fracture are estimated using finite element modeling. The loading path and the resulting fracture locus were found to be sensitive to the yield criterion employed, which underscores the importance of an adequate modeling of plastic anisotropy in ductile fracture studies. Based on the finite element modeling, the fracture locus is represented with three common criteria (Oyane, Johnson–Cook and Hosford–Coulomb), as well as a newly proposed one as the linear combination of the first two. However, beyond that, it is still questionable if all of these experiments are probing the same fracture locus, since the predicted loading paths of notched tension specimens are highly evolving compared to those of central hole and shear ones.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-019-00345-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum base alloys ; Anisotropy ; Automotive Engineering ; Casting alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Digital imaging ; Ductile fracture ; Experiments ; Finite element method ; Heat treating ; Image compression ; Loci ; Magnesium ; Materials Science ; Mechanical Engineering ; Modelling ; Original Paper ; Plane strain ; Plastic anisotropy ; Silicon ; Thickness measurement ; Yield criteria</subject><ispartof>International journal of fracture, 2019-03, Vol.216 (1), p.101-121</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-19e25cfc44f05c86e3b917f03d5c020ddde44ddf7f0c015c00c84558459983c43</citedby><cites>FETCH-LOGICAL-c385t-19e25cfc44f05c86e3b917f03d5c020ddde44ddf7f0c015c00c84558459983c43</cites><orcidid>0000-0001-9482-9394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-019-00345-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-019-00345-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Baral, Madhav</creatorcontrib><creatorcontrib>Ha, Jinjin</creatorcontrib><creatorcontrib>Korkolis, Yannis P.</creatorcontrib><title>Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>The plastic anisotropy and ductile fracture behavior of an Al–Si–Mg die-cast alloy (AA365-T7, or Aural-2) is probed using a combination of experiments and analysis. The plastic anisotropy is assessed using uniaxial tension, plane-strain tension and disc compression experiments, which are then used to calibrate the Yld2004-3D anisotropic yield criterion. The fracture behavior is investigated using notched tension, central hole and shear specimens, with the latter employing a geometry that was custom-designed for this material. Digital image correlation is used to assess the full strain fields for these experiments. However, fracture is expected to initiate at the through-thickness mid-plane of the specimens and thus it cannot be measured directly from experiments. Instead, the stresses and strains at the onset of fracture are estimated using finite element modeling. The loading path and the resulting fracture locus were found to be sensitive to the yield criterion employed, which underscores the importance of an adequate modeling of plastic anisotropy in ductile fracture studies. Based on the finite element modeling, the fracture locus is represented with three common criteria (Oyane, Johnson–Cook and Hosford–Coulomb), as well as a newly proposed one as the linear combination of the first two. However, beyond that, it is still questionable if all of these experiments are probing the same fracture locus, since the predicted loading paths of notched tension specimens are highly evolving compared to those of central hole and shear ones.</description><subject>Aluminum base alloys</subject><subject>Anisotropy</subject><subject>Automotive Engineering</subject><subject>Casting alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Digital imaging</subject><subject>Ductile fracture</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Heat treating</subject><subject>Image compression</subject><subject>Loci</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Plane strain</subject><subject>Plastic anisotropy</subject><subject>Silicon</subject><subject>Thickness measurement</subject><subject>Yield criteria</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRYMoOI7-gKuA62jlNeksh8EnIwrqOrR5DBl6usekezE7_8E_9EuMtuDORVXB5Z4q6iJ0SuGcAqiLTEGBIEA1AeBCErqHJlQqTthM8X00Aa5mRAumD9FRzmsA0KoSE3T32NS5jzb2O1y3DrvB9rHxOKTa9kPyeNM538R2hbtQDHjefL5_PMXS7lfYRU9swXHdNN3uGB2Eusn-5HdO0cvV5fPihiwfrm8X8yWxvJI9odozaYMVIoC01czzV01VAO6kBQbOOS-Ec6FIFmjRwFZCylJaV9wKPkVn495t6t4Gn3uz7obUlpOGMeCsvE-huNjosqnLOflgtilu6rQzFMx3ZmbMzJTMzE9mhhaIj1Au5nbl09_qf6gvEpZvgw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Baral, Madhav</creator><creator>Ha, Jinjin</creator><creator>Korkolis, Yannis P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9482-9394</orcidid></search><sort><creationdate>20190301</creationdate><title>Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy</title><author>Baral, Madhav ; Ha, Jinjin ; Korkolis, Yannis P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-19e25cfc44f05c86e3b917f03d5c020ddde44ddf7f0c015c00c84558459983c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum base alloys</topic><topic>Anisotropy</topic><topic>Automotive Engineering</topic><topic>Casting alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Digital imaging</topic><topic>Ductile fracture</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Heat treating</topic><topic>Image compression</topic><topic>Loci</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Plane strain</topic><topic>Plastic anisotropy</topic><topic>Silicon</topic><topic>Thickness measurement</topic><topic>Yield criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baral, Madhav</creatorcontrib><creatorcontrib>Ha, Jinjin</creatorcontrib><creatorcontrib>Korkolis, Yannis P.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baral, Madhav</au><au>Ha, Jinjin</au><au>Korkolis, Yannis P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>216</volume><issue>1</issue><spage>101</spage><epage>121</epage><pages>101-121</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>The plastic anisotropy and ductile fracture behavior of an Al–Si–Mg die-cast alloy (AA365-T7, or Aural-2) is probed using a combination of experiments and analysis. The plastic anisotropy is assessed using uniaxial tension, plane-strain tension and disc compression experiments, which are then used to calibrate the Yld2004-3D anisotropic yield criterion. The fracture behavior is investigated using notched tension, central hole and shear specimens, with the latter employing a geometry that was custom-designed for this material. Digital image correlation is used to assess the full strain fields for these experiments. However, fracture is expected to initiate at the through-thickness mid-plane of the specimens and thus it cannot be measured directly from experiments. Instead, the stresses and strains at the onset of fracture are estimated using finite element modeling. The loading path and the resulting fracture locus were found to be sensitive to the yield criterion employed, which underscores the importance of an adequate modeling of plastic anisotropy in ductile fracture studies. Based on the finite element modeling, the fracture locus is represented with three common criteria (Oyane, Johnson–Cook and Hosford–Coulomb), as well as a newly proposed one as the linear combination of the first two. However, beyond that, it is still questionable if all of these experiments are probing the same fracture locus, since the predicted loading paths of notched tension specimens are highly evolving compared to those of central hole and shear ones.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-019-00345-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9482-9394</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2019-03, Vol.216 (1), p.101-121
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_journals_2203234510
source Springer Nature - Complete Springer Journals
subjects Aluminum base alloys
Anisotropy
Automotive Engineering
Casting alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Digital imaging
Ductile fracture
Experiments
Finite element method
Heat treating
Image compression
Loci
Magnesium
Materials Science
Mechanical Engineering
Modelling
Original Paper
Plane strain
Plastic anisotropy
Silicon
Thickness measurement
Yield criteria
title Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20and%20ductile%20fracture%20modeling%20of%20an%20Al%E2%80%93Si%E2%80%93Mg%20die-cast%20alloy&rft.jtitle=International%20journal%20of%20fracture&rft.au=Baral,%20Madhav&rft.date=2019-03-01&rft.volume=216&rft.issue=1&rft.spage=101&rft.epage=121&rft.pages=101-121&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-019-00345-1&rft_dat=%3Cproquest_cross%3E2203234510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203234510&rft_id=info:pmid/&rfr_iscdi=true