A hybrid AHP-GA method for metadata-based learning object evaluation

A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2019-01, Vol.31 (Suppl 1), p.671-681
Hauptverfasser: İnce, Murat, Yiğit, Tuncay, Işık, Ali Hakan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue Suppl 1
container_start_page 671
container_title Neural computing & applications
container_volume 31
creator İnce, Murat
Yiğit, Tuncay
Işık, Ali Hakan
description A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When there are many LOs in LORs, the evaluation and selection of them become a subjective and time-consuming process. Thus, selecting the most suitable and best qualified LO is considered as a multi-criteria decision-making (MCDM) problem. In this study, a hybrid analytic hierarchy process genetic algorithm (AHP-GA) method was developed for the evaluation of LOs from web-based Intelligent Learning Object Framework (Zonesa) LOR. This proposed hybrid system was used in a real case study and the results demonstrated that the proposed system can be used effectively by both users and machines to produce content by the help of LO metadata.
doi_str_mv 10.1007/s00521-017-3023-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203231764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203231764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d704a3c1619565cc83a8c5c9a24f746dcee9d6e273ecf64aa8e5e28ddf006f743</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZ7-QYqrZCQQ96Xra7kzalTepuKvTfm5CCJ08zwzzvDDyE3DN4ZADmKQEozigwQwVwQc0FmTApRD-p_JJMoJD9VktxTW5S2gKA1LmakOcy25xWsQ5Zufig8zLbY7dpQ1a1cWhdcJ2jK5cwZDt0sambddautui7DH_c7ui6um1uyVXldgnvznVKvl5fPmcLunyfv83KJfVCFR0NBqQTnmlWKK28z4XLvfKF47IyUgePWASN3Aj0lZbO5aiQ5yFUALonxJQ8jHcPsf0-Yurstj3Gpn9pOQfBBTN6oNhI-dimFLGyh1jvXTxZBnaQZUdZtpdlB1nW9Bk-ZlLPNmuMf5f_D_0CrtdrQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203231764</pqid></control><display><type>article</type><title>A hybrid AHP-GA method for metadata-based learning object evaluation</title><source>Springer Nature - Complete Springer Journals</source><creator>İnce, Murat ; Yiğit, Tuncay ; Işık, Ali Hakan</creator><creatorcontrib>İnce, Murat ; Yiğit, Tuncay ; Işık, Ali Hakan</creatorcontrib><description>A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When there are many LOs in LORs, the evaluation and selection of them become a subjective and time-consuming process. Thus, selecting the most suitable and best qualified LO is considered as a multi-criteria decision-making (MCDM) problem. In this study, a hybrid analytic hierarchy process genetic algorithm (AHP-GA) method was developed for the evaluation of LOs from web-based Intelligent Learning Object Framework (Zonesa) LOR. This proposed hybrid system was used in a real case study and the results demonstrated that the proposed system can be used effectively by both users and machines to produce content by the help of LO metadata.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-017-3023-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Analytic hierarchy process ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision analysis ; Decision making ; Distance learning ; Genetic algorithms ; Hybrid systems ; Image Processing and Computer Vision ; Metadata ; Multiple criterion ; Original Article ; Probability and Statistics in Computer Science ; Repositories</subject><ispartof>Neural computing &amp; applications, 2019-01, Vol.31 (Suppl 1), p.671-681</ispartof><rights>The Natural Computing Applications Forum 2017</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d704a3c1619565cc83a8c5c9a24f746dcee9d6e273ecf64aa8e5e28ddf006f743</citedby><cites>FETCH-LOGICAL-c359t-d704a3c1619565cc83a8c5c9a24f746dcee9d6e273ecf64aa8e5e28ddf006f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-017-3023-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-017-3023-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>İnce, Murat</creatorcontrib><creatorcontrib>Yiğit, Tuncay</creatorcontrib><creatorcontrib>Işık, Ali Hakan</creatorcontrib><title>A hybrid AHP-GA method for metadata-based learning object evaluation</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When there are many LOs in LORs, the evaluation and selection of them become a subjective and time-consuming process. Thus, selecting the most suitable and best qualified LO is considered as a multi-criteria decision-making (MCDM) problem. In this study, a hybrid analytic hierarchy process genetic algorithm (AHP-GA) method was developed for the evaluation of LOs from web-based Intelligent Learning Object Framework (Zonesa) LOR. This proposed hybrid system was used in a real case study and the results demonstrated that the proposed system can be used effectively by both users and machines to produce content by the help of LO metadata.</description><subject>Analytic hierarchy process</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Distance learning</subject><subject>Genetic algorithms</subject><subject>Hybrid systems</subject><subject>Image Processing and Computer Vision</subject><subject>Metadata</subject><subject>Multiple criterion</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Repositories</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59XZ7-QYqrZCQQ96Xra7kzalTepuKvTfm5CCJ08zwzzvDDyE3DN4ZADmKQEozigwQwVwQc0FmTApRD-p_JJMoJD9VktxTW5S2gKA1LmakOcy25xWsQ5Zufig8zLbY7dpQ1a1cWhdcJ2jK5cwZDt0sambddautui7DH_c7ui6um1uyVXldgnvznVKvl5fPmcLunyfv83KJfVCFR0NBqQTnmlWKK28z4XLvfKF47IyUgePWASN3Aj0lZbO5aiQ5yFUALonxJQ8jHcPsf0-Yurstj3Gpn9pOQfBBTN6oNhI-dimFLGyh1jvXTxZBnaQZUdZtpdlB1nW9Bk-ZlLPNmuMf5f_D_0CrtdrQQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>İnce, Murat</creator><creator>Yiğit, Tuncay</creator><creator>Işık, Ali Hakan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>A hybrid AHP-GA method for metadata-based learning object evaluation</title><author>İnce, Murat ; Yiğit, Tuncay ; Işık, Ali Hakan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d704a3c1619565cc83a8c5c9a24f746dcee9d6e273ecf64aa8e5e28ddf006f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytic hierarchy process</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Distance learning</topic><topic>Genetic algorithms</topic><topic>Hybrid systems</topic><topic>Image Processing and Computer Vision</topic><topic>Metadata</topic><topic>Multiple criterion</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Repositories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>İnce, Murat</creatorcontrib><creatorcontrib>Yiğit, Tuncay</creatorcontrib><creatorcontrib>Işık, Ali Hakan</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>İnce, Murat</au><au>Yiğit, Tuncay</au><au>Işık, Ali Hakan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid AHP-GA method for metadata-based learning object evaluation</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>31</volume><issue>Suppl 1</issue><spage>671</spage><epage>681</epage><pages>671-681</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When there are many LOs in LORs, the evaluation and selection of them become a subjective and time-consuming process. Thus, selecting the most suitable and best qualified LO is considered as a multi-criteria decision-making (MCDM) problem. In this study, a hybrid analytic hierarchy process genetic algorithm (AHP-GA) method was developed for the evaluation of LOs from web-based Intelligent Learning Object Framework (Zonesa) LOR. This proposed hybrid system was used in a real case study and the results demonstrated that the proposed system can be used effectively by both users and machines to produce content by the help of LO metadata.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-017-3023-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2019-01, Vol.31 (Suppl 1), p.671-681
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2203231764
source Springer Nature - Complete Springer Journals
subjects Analytic hierarchy process
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision analysis
Decision making
Distance learning
Genetic algorithms
Hybrid systems
Image Processing and Computer Vision
Metadata
Multiple criterion
Original Article
Probability and Statistics in Computer Science
Repositories
title A hybrid AHP-GA method for metadata-based learning object evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20AHP-GA%20method%20for%20metadata-based%20learning%20object%20evaluation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=%C4%B0nce,%20Murat&rft.date=2019-01-01&rft.volume=31&rft.issue=Suppl%201&rft.spage=671&rft.epage=681&rft.pages=671-681&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-017-3023-7&rft_dat=%3Cproquest_cross%3E2203231764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203231764&rft_id=info:pmid/&rfr_iscdi=true