Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy
The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2019-03, Vol.361, p.413-424 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | |
container_start_page | 413 |
container_title | Surface & coatings technology |
container_volume | 361 |
creator | Vasylyev, M.A. Mordyuk, B.N. Sidorenko, S.I. Voloshko, S.M. Burmak, A.P. Kruhlov, I.O. Zakiev, V.I. |
description | The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively.
•Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate |
doi_str_mv | 10.1016/j.surfcoat.2018.12.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203100696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218313215</els_id><sourcerecordid>2203100696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</originalsourceid><addsrcrecordid>eNqFkD1PHDEQhi2USFwIfwFZShntZuz98LrL6ZRAJJQ0pKGxjHcMPvbWm7GPiPx6fLpQU00xz_uM5mXsQkAtQPRftnXak3fR5lqCGGohaxBwwlZiULpqmla9YyuQnaoGreQp-5DSFgCE0u2KPW4eLFmXkcI_m0OcefT8ln7ygy_M93yKf6uMuwXJ5j0hH3GJKWQceWHzA_KFcAq7MFt65mv6zIsj8UxoD4wE2fL1VNlpis8f2Xtvp4Tn_-cZ-_39283mqrr-dfljs76uXNNCrrzXXas1DBZU30mp72wHulVNpwU0dugHP9413jmnwetR-RFdO_ZlDx0q2TVn7NPRu1D8s8eUzTbuaS4njZTQCIBe94Xqj5SjmBKhNwuFXfnCCDCHYs3WvBZrDsUaIU0ptgS_HoNYfngKSCa5gLPDMRC6bMYY3lK8AA0hhQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203100696</pqid></control><display><type>article</type><title>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Vasylyev, M.A. ; Mordyuk, B.N. ; Sidorenko, S.I. ; Voloshko, S.M. ; Burmak, A.P. ; Kruhlov, I.O. ; Zakiev, V.I.</creator><creatorcontrib>Vasylyev, M.A. ; Mordyuk, B.N. ; Sidorenko, S.I. ; Voloshko, S.M. ; Burmak, A.P. ; Kruhlov, I.O. ; Zakiev, V.I.</creatorcontrib><description>The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively.
•Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.12.010</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adhesive strength ; Al-alloy ; Alloys ; Aluminum base alloys ; Arc deposition ; Argon ions ; Coefficient of friction ; Corrosion ; Corrosion prevention ; Cyclic loads ; Diamonds ; Friction resistance ; Friction/wear behaviors ; Grains ; Hardness ; Low temperature ; Magnesium base alloys ; Melting points ; Microstructure ; Modulus of elasticity ; Orthorhombic phase ; Paraffins ; Protective coatings ; Saline solutions ; Sliding ; Substrates ; Thickness ; Vacuum-arc deposition ; Wear resistance ; Zirconium nitrides ; ZrN coating</subject><ispartof>Surface & coatings technology, 2019-03, Vol.361, p.413-424</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</citedby><cites>FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</cites><orcidid>0000-0001-6025-3884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.12.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Vasylyev, M.A.</creatorcontrib><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Sidorenko, S.I.</creatorcontrib><creatorcontrib>Voloshko, S.M.</creatorcontrib><creatorcontrib>Burmak, A.P.</creatorcontrib><creatorcontrib>Kruhlov, I.O.</creatorcontrib><creatorcontrib>Zakiev, V.I.</creatorcontrib><title>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</title><title>Surface & coatings technology</title><description>The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively.
•Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate</description><subject>Adhesive strength</subject><subject>Al-alloy</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Arc deposition</subject><subject>Argon ions</subject><subject>Coefficient of friction</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Cyclic loads</subject><subject>Diamonds</subject><subject>Friction resistance</subject><subject>Friction/wear behaviors</subject><subject>Grains</subject><subject>Hardness</subject><subject>Low temperature</subject><subject>Magnesium base alloys</subject><subject>Melting points</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Orthorhombic phase</subject><subject>Paraffins</subject><subject>Protective coatings</subject><subject>Saline solutions</subject><subject>Sliding</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Vacuum-arc deposition</subject><subject>Wear resistance</subject><subject>Zirconium nitrides</subject><subject>ZrN coating</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PHDEQhi2USFwIfwFZShntZuz98LrL6ZRAJJQ0pKGxjHcMPvbWm7GPiPx6fLpQU00xz_uM5mXsQkAtQPRftnXak3fR5lqCGGohaxBwwlZiULpqmla9YyuQnaoGreQp-5DSFgCE0u2KPW4eLFmXkcI_m0OcefT8ln7ygy_M93yKf6uMuwXJ5j0hH3GJKWQceWHzA_KFcAq7MFt65mv6zIsj8UxoD4wE2fL1VNlpis8f2Xtvp4Tn_-cZ-_39283mqrr-dfljs76uXNNCrrzXXas1DBZU30mp72wHulVNpwU0dugHP9413jmnwetR-RFdO_ZlDx0q2TVn7NPRu1D8s8eUzTbuaS4njZTQCIBe94Xqj5SjmBKhNwuFXfnCCDCHYs3WvBZrDsUaIU0ptgS_HoNYfngKSCa5gLPDMRC6bMYY3lK8AA0hhQQ</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Vasylyev, M.A.</creator><creator>Mordyuk, B.N.</creator><creator>Sidorenko, S.I.</creator><creator>Voloshko, S.M.</creator><creator>Burmak, A.P.</creator><creator>Kruhlov, I.O.</creator><creator>Zakiev, V.I.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6025-3884</orcidid></search><sort><creationdate>20190315</creationdate><title>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</title><author>Vasylyev, M.A. ; Mordyuk, B.N. ; Sidorenko, S.I. ; Voloshko, S.M. ; Burmak, A.P. ; Kruhlov, I.O. ; Zakiev, V.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesive strength</topic><topic>Al-alloy</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Arc deposition</topic><topic>Argon ions</topic><topic>Coefficient of friction</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Cyclic loads</topic><topic>Diamonds</topic><topic>Friction resistance</topic><topic>Friction/wear behaviors</topic><topic>Grains</topic><topic>Hardness</topic><topic>Low temperature</topic><topic>Magnesium base alloys</topic><topic>Melting points</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Orthorhombic phase</topic><topic>Paraffins</topic><topic>Protective coatings</topic><topic>Saline solutions</topic><topic>Sliding</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Vacuum-arc deposition</topic><topic>Wear resistance</topic><topic>Zirconium nitrides</topic><topic>ZrN coating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasylyev, M.A.</creatorcontrib><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Sidorenko, S.I.</creatorcontrib><creatorcontrib>Voloshko, S.M.</creatorcontrib><creatorcontrib>Burmak, A.P.</creatorcontrib><creatorcontrib>Kruhlov, I.O.</creatorcontrib><creatorcontrib>Zakiev, V.I.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasylyev, M.A.</au><au>Mordyuk, B.N.</au><au>Sidorenko, S.I.</au><au>Voloshko, S.M.</au><au>Burmak, A.P.</au><au>Kruhlov, I.O.</au><au>Zakiev, V.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</atitle><jtitle>Surface & coatings technology</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>361</volume><spage>413</spage><epage>424</epage><pages>413-424</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively.
•Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.12.010</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6025-3884</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2019-03, Vol.361, p.413-424 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2203100696 |
source | Elsevier ScienceDirect Journals |
subjects | Adhesive strength Al-alloy Alloys Aluminum base alloys Arc deposition Argon ions Coefficient of friction Corrosion Corrosion prevention Cyclic loads Diamonds Friction resistance Friction/wear behaviors Grains Hardness Low temperature Magnesium base alloys Melting points Microstructure Modulus of elasticity Orthorhombic phase Paraffins Protective coatings Saline solutions Sliding Substrates Thickness Vacuum-arc deposition Wear resistance Zirconium nitrides ZrN coating |
title | Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ZrN%20coating%20low-temperature%20deposited%20on%20the%20preliminary%20Ar+%20ions%20treated%202024%20Al-alloy&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Vasylyev,%20M.A.&rft.date=2019-03-15&rft.volume=361&rft.spage=413&rft.epage=424&rft.pages=413-424&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.12.010&rft_dat=%3Cproquest_cross%3E2203100696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203100696&rft_id=info:pmid/&rft_els_id=S0257897218313215&rfr_iscdi=true |