Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy

The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2019-03, Vol.361, p.413-424
Hauptverfasser: Vasylyev, M.A., Mordyuk, B.N., Sidorenko, S.I., Voloshko, S.M., Burmak, A.P., Kruhlov, I.O., Zakiev, V.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue
container_start_page 413
container_title Surface & coatings technology
container_volume 361
creator Vasylyev, M.A.
Mordyuk, B.N.
Sidorenko, S.I.
Voloshko, S.M.
Burmak, A.P.
Kruhlov, I.O.
Zakiev, V.I.
description The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively. •Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate
doi_str_mv 10.1016/j.surfcoat.2018.12.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203100696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218313215</els_id><sourcerecordid>2203100696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</originalsourceid><addsrcrecordid>eNqFkD1PHDEQhi2USFwIfwFZShntZuz98LrL6ZRAJJQ0pKGxjHcMPvbWm7GPiPx6fLpQU00xz_uM5mXsQkAtQPRftnXak3fR5lqCGGohaxBwwlZiULpqmla9YyuQnaoGreQp-5DSFgCE0u2KPW4eLFmXkcI_m0OcefT8ln7ygy_M93yKf6uMuwXJ5j0hH3GJKWQceWHzA_KFcAq7MFt65mv6zIsj8UxoD4wE2fL1VNlpis8f2Xtvp4Tn_-cZ-_39283mqrr-dfljs76uXNNCrrzXXas1DBZU30mp72wHulVNpwU0dugHP9413jmnwetR-RFdO_ZlDx0q2TVn7NPRu1D8s8eUzTbuaS4njZTQCIBe94Xqj5SjmBKhNwuFXfnCCDCHYs3WvBZrDsUaIU0ptgS_HoNYfngKSCa5gLPDMRC6bMYY3lK8AA0hhQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203100696</pqid></control><display><type>article</type><title>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</title><source>Elsevier ScienceDirect Journals</source><creator>Vasylyev, M.A. ; Mordyuk, B.N. ; Sidorenko, S.I. ; Voloshko, S.M. ; Burmak, A.P. ; Kruhlov, I.O. ; Zakiev, V.I.</creator><creatorcontrib>Vasylyev, M.A. ; Mordyuk, B.N. ; Sidorenko, S.I. ; Voloshko, S.M. ; Burmak, A.P. ; Kruhlov, I.O. ; Zakiev, V.I.</creatorcontrib><description>The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively. •Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.12.010</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adhesive strength ; Al-alloy ; Alloys ; Aluminum base alloys ; Arc deposition ; Argon ions ; Coefficient of friction ; Corrosion ; Corrosion prevention ; Cyclic loads ; Diamonds ; Friction resistance ; Friction/wear behaviors ; Grains ; Hardness ; Low temperature ; Magnesium base alloys ; Melting points ; Microstructure ; Modulus of elasticity ; Orthorhombic phase ; Paraffins ; Protective coatings ; Saline solutions ; Sliding ; Substrates ; Thickness ; Vacuum-arc deposition ; Wear resistance ; Zirconium nitrides ; ZrN coating</subject><ispartof>Surface &amp; coatings technology, 2019-03, Vol.361, p.413-424</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</citedby><cites>FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</cites><orcidid>0000-0001-6025-3884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.12.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Vasylyev, M.A.</creatorcontrib><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Sidorenko, S.I.</creatorcontrib><creatorcontrib>Voloshko, S.M.</creatorcontrib><creatorcontrib>Burmak, A.P.</creatorcontrib><creatorcontrib>Kruhlov, I.O.</creatorcontrib><creatorcontrib>Zakiev, V.I.</creatorcontrib><title>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</title><title>Surface &amp; coatings technology</title><description>The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively. •Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate</description><subject>Adhesive strength</subject><subject>Al-alloy</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Arc deposition</subject><subject>Argon ions</subject><subject>Coefficient of friction</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Cyclic loads</subject><subject>Diamonds</subject><subject>Friction resistance</subject><subject>Friction/wear behaviors</subject><subject>Grains</subject><subject>Hardness</subject><subject>Low temperature</subject><subject>Magnesium base alloys</subject><subject>Melting points</subject><subject>Microstructure</subject><subject>Modulus of elasticity</subject><subject>Orthorhombic phase</subject><subject>Paraffins</subject><subject>Protective coatings</subject><subject>Saline solutions</subject><subject>Sliding</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Vacuum-arc deposition</subject><subject>Wear resistance</subject><subject>Zirconium nitrides</subject><subject>ZrN coating</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PHDEQhi2USFwIfwFZShntZuz98LrL6ZRAJJQ0pKGxjHcMPvbWm7GPiPx6fLpQU00xz_uM5mXsQkAtQPRftnXak3fR5lqCGGohaxBwwlZiULpqmla9YyuQnaoGreQp-5DSFgCE0u2KPW4eLFmXkcI_m0OcefT8ln7ygy_M93yKf6uMuwXJ5j0hH3GJKWQceWHzA_KFcAq7MFt65mv6zIsj8UxoD4wE2fL1VNlpis8f2Xtvp4Tn_-cZ-_39283mqrr-dfljs76uXNNCrrzXXas1DBZU30mp72wHulVNpwU0dugHP9413jmnwetR-RFdO_ZlDx0q2TVn7NPRu1D8s8eUzTbuaS4njZTQCIBe94Xqj5SjmBKhNwuFXfnCCDCHYs3WvBZrDsUaIU0ptgS_HoNYfngKSCa5gLPDMRC6bMYY3lK8AA0hhQQ</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Vasylyev, M.A.</creator><creator>Mordyuk, B.N.</creator><creator>Sidorenko, S.I.</creator><creator>Voloshko, S.M.</creator><creator>Burmak, A.P.</creator><creator>Kruhlov, I.O.</creator><creator>Zakiev, V.I.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6025-3884</orcidid></search><sort><creationdate>20190315</creationdate><title>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</title><author>Vasylyev, M.A. ; Mordyuk, B.N. ; Sidorenko, S.I. ; Voloshko, S.M. ; Burmak, A.P. ; Kruhlov, I.O. ; Zakiev, V.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ff9549908a0765229ba50947359103a868fdb3fccc90f9d7fdec4d673505e7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesive strength</topic><topic>Al-alloy</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Arc deposition</topic><topic>Argon ions</topic><topic>Coefficient of friction</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Cyclic loads</topic><topic>Diamonds</topic><topic>Friction resistance</topic><topic>Friction/wear behaviors</topic><topic>Grains</topic><topic>Hardness</topic><topic>Low temperature</topic><topic>Magnesium base alloys</topic><topic>Melting points</topic><topic>Microstructure</topic><topic>Modulus of elasticity</topic><topic>Orthorhombic phase</topic><topic>Paraffins</topic><topic>Protective coatings</topic><topic>Saline solutions</topic><topic>Sliding</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Vacuum-arc deposition</topic><topic>Wear resistance</topic><topic>Zirconium nitrides</topic><topic>ZrN coating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasylyev, M.A.</creatorcontrib><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Sidorenko, S.I.</creatorcontrib><creatorcontrib>Voloshko, S.M.</creatorcontrib><creatorcontrib>Burmak, A.P.</creatorcontrib><creatorcontrib>Kruhlov, I.O.</creatorcontrib><creatorcontrib>Zakiev, V.I.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasylyev, M.A.</au><au>Mordyuk, B.N.</au><au>Sidorenko, S.I.</au><au>Voloshko, S.M.</au><au>Burmak, A.P.</au><au>Kruhlov, I.O.</au><au>Zakiev, V.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>361</volume><spage>413</spage><epage>424</epage><pages>413-424</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>The present paper considers the problem of the low-temperature deposition of the hard coatings on the alloys having a low melting point and a high affinity for oxygen, like aluminum or magnesium alloys. It is demonstrated that a hard ZrN coating can be produced on the 2024 aluminum alloy by the low-temperature vacuum-arc deposition method. To achieve high adhesion strength between the coating and substrate, the substrate was sputtered by low-energy inert Ar+ ions before the deposition process in order to remove the natural oxide layer. The optimal technological regimes selected and used allowed obtaining the stoichiometric ZrN coating of extremely low roughness (0.061 μm), uniform thickness (~1 μm) with nano-scale columnar microstructure with the cross-sectional size of the columnar grains of ~20–50 nm. The layered microstructure of the obtained coating respectively consisted of the columnar and V-shaped grains in the lower and upper layers comes to be in the ‘transition zone’ on the ‘structure-zone diagram’. The lower layers consist of a number of AlxZry phases along with the Zr3N4 orthorhombic phase, while the outmost layer of the film contains the single ZrN fcc phase. In comparison with the substrate alloy, the produced ZrN coating is shown to possess the superior anti-corrosion properties in saline solution, a high hardness (~20 GPa) and elastic modulus (196 GPa), high adhesion strength both at the progressively increased load and at cyclic dry sliding of the conical diamond indenter with the 50 μm tip, low friction coefficients and high wear resistance at the reciprocating sliding both in the dry and wet (liquid paraffin) conditions against the conical diamond indenter with the 50 μm tip and 8 mm Si3N4 ball, respectively. •Method of low-temperature arc deposition of hard coatings on the low melting point alloys•Preliminary sputtering by low-energy inert Ar+ ions for removing the natural oxide and achieving high coating/substrate adhesion•Vacuum arc deposited ZrN coating of 1 μm thick with nano-scale (20–50 nm) columnar microstructure•The ZrN coating of high hardness (~20 GPa) and wear resistance, and low friction and corrosion rate</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.12.010</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6025-3884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2019-03, Vol.361, p.413-424
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2203100696
source Elsevier ScienceDirect Journals
subjects Adhesive strength
Al-alloy
Alloys
Aluminum base alloys
Arc deposition
Argon ions
Coefficient of friction
Corrosion
Corrosion prevention
Cyclic loads
Diamonds
Friction resistance
Friction/wear behaviors
Grains
Hardness
Low temperature
Magnesium base alloys
Melting points
Microstructure
Modulus of elasticity
Orthorhombic phase
Paraffins
Protective coatings
Saline solutions
Sliding
Substrates
Thickness
Vacuum-arc deposition
Wear resistance
Zirconium nitrides
ZrN coating
title Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ZrN%20coating%20low-temperature%20deposited%20on%20the%20preliminary%20Ar+%20ions%20treated%202024%20Al-alloy&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Vasylyev,%20M.A.&rft.date=2019-03-15&rft.volume=361&rft.spage=413&rft.epage=424&rft.pages=413-424&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.12.010&rft_dat=%3Cproquest_cross%3E2203100696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203100696&rft_id=info:pmid/&rft_els_id=S0257897218313215&rfr_iscdi=true