Abrasive resistance and corrosion properties of AISI 316 sieve via low-temperature gaseous nitriding

AISI 316 austenitic stainless steel samples were treated via gaseous nitriding at low temperature (430 °C) to obtain a single expanded austenite layer (S-phase). The structural phases were characterized via both optical microscopy and X-ray diffraction. Microhardness and dry-sliding wear behavior we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2019-03, Vol.361, p.349-356
Hauptverfasser: Wang, Xingwei, Liu, Zhongyu, Chen, Yangyang, Sun, Jinquan, He, Qingkun, Liu, Qiancheng, Liu, Guozhi, Xie, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue
container_start_page 349
container_title Surface & coatings technology
container_volume 361
creator Wang, Xingwei
Liu, Zhongyu
Chen, Yangyang
Sun, Jinquan
He, Qingkun
Liu, Qiancheng
Liu, Guozhi
Xie, Kun
description AISI 316 austenitic stainless steel samples were treated via gaseous nitriding at low temperature (430 °C) to obtain a single expanded austenite layer (S-phase). The structural phases were characterized via both optical microscopy and X-ray diffraction. Microhardness and dry-sliding wear behavior were investigated via scanning electron microscopy, electron probe of microanalysis, Vickers indentation tester, and ball-on-flat wear tester, respectively. The wear of the substrate AISI 316 steel was severe and characterized by strong adhesion, abrasion, and spallation, while the wear of the S-phase layer was mild and dominated by slight abrasion. Furthermore, the corrosion properties were investigated via potentiodynamic polarization testing in 3.5% NaCl solution. The results show that the S-phase layers was produced at low nitrided temperature with improved wear resistance as well as improved corrosion resistance. •Gaseous nitriding at 430 °C produced a S-phase layer with thickness of 7–9 μm.•The maximum surface microhardness of 1100 HV0.05 was obtained.•The corrosion resistance was improved by gaseous nitriding.•The wear resistance was enhanced significantly by gaseous nitriding.
doi_str_mv 10.1016/j.surfcoat.2019.01.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203100577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897219300374</els_id><sourcerecordid>2203100577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ffc068a6eda37cbb3687b37d66ef0dcf1bc306066ed7c664d18e7601de9f25803</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQQKed51stsnuzVL8UxA8qOeQTSaSopuaZCt-e1OqZ0_DwHtv5v0IuWRQM2DielOnKToTdK4bYH0NrIamOyIz1sm-4ryVx2QGzUJWXS-bU3KW0gYAmOzbGbHLIerkd0gjJp-yHg1SPVpqQowh-TDSbQxbjNljosHR5fp5TTkTNHksrp3X9D18VRk_ikjnKSJ90wnDlOjoc_TWj2_n5MTp94QXv3NOXu9uX1YP1ePT_Xq1fKwMbyFXzhkQnRZoNZdmGLjo5MClFQIdWOPYYDgIKKuVRojWsg6lAGaxd82iAz4nV4fc8vLnhCmrTZjiWE6qpgHOABZSFpU4qEwpmCI6tY3-Q8dvxUDtiaqN-iOq9kQVMFWIFuPNwYilw85jVMl4LMCsj2iyssH_F_EDdJWEOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203100577</pqid></control><display><type>article</type><title>Abrasive resistance and corrosion properties of AISI 316 sieve via low-temperature gaseous nitriding</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Xingwei ; Liu, Zhongyu ; Chen, Yangyang ; Sun, Jinquan ; He, Qingkun ; Liu, Qiancheng ; Liu, Guozhi ; Xie, Kun</creator><creatorcontrib>Wang, Xingwei ; Liu, Zhongyu ; Chen, Yangyang ; Sun, Jinquan ; He, Qingkun ; Liu, Qiancheng ; Liu, Guozhi ; Xie, Kun</creatorcontrib><description>AISI 316 austenitic stainless steel samples were treated via gaseous nitriding at low temperature (430 °C) to obtain a single expanded austenite layer (S-phase). The structural phases were characterized via both optical microscopy and X-ray diffraction. Microhardness and dry-sliding wear behavior were investigated via scanning electron microscopy, electron probe of microanalysis, Vickers indentation tester, and ball-on-flat wear tester, respectively. The wear of the substrate AISI 316 steel was severe and characterized by strong adhesion, abrasion, and spallation, while the wear of the S-phase layer was mild and dominated by slight abrasion. Furthermore, the corrosion properties were investigated via potentiodynamic polarization testing in 3.5% NaCl solution. The results show that the S-phase layers was produced at low nitrided temperature with improved wear resistance as well as improved corrosion resistance. •Gaseous nitriding at 430 °C produced a S-phase layer with thickness of 7–9 μm.•The maximum surface microhardness of 1100 HV0.05 was obtained.•The corrosion resistance was improved by gaseous nitriding.•The wear resistance was enhanced significantly by gaseous nitriding.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2019.01.028</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Abrasion ; Adhesive strength ; AISI 316 sieve ; Austenitic stainless steels ; Corrosion ; Corrosion resistance ; Corrosive wear ; Diamond pyramid hardness tests ; Electron probes ; Frictional wear ; Low temperature ; Low-temperature nitriding ; Microscopes ; Microscopy ; Nitriding ; Optical microscopy ; Scanning electron microscopy ; Sliding friction ; Spallation ; Substrates ; Wear resistance ; X-ray diffraction</subject><ispartof>Surface &amp; coatings technology, 2019-03, Vol.361, p.349-356</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ffc068a6eda37cbb3687b37d66ef0dcf1bc306066ed7c664d18e7601de9f25803</citedby><cites>FETCH-LOGICAL-c340t-ffc068a6eda37cbb3687b37d66ef0dcf1bc306066ed7c664d18e7601de9f25803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2019.01.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Xingwei</creatorcontrib><creatorcontrib>Liu, Zhongyu</creatorcontrib><creatorcontrib>Chen, Yangyang</creatorcontrib><creatorcontrib>Sun, Jinquan</creatorcontrib><creatorcontrib>He, Qingkun</creatorcontrib><creatorcontrib>Liu, Qiancheng</creatorcontrib><creatorcontrib>Liu, Guozhi</creatorcontrib><creatorcontrib>Xie, Kun</creatorcontrib><title>Abrasive resistance and corrosion properties of AISI 316 sieve via low-temperature gaseous nitriding</title><title>Surface &amp; coatings technology</title><description>AISI 316 austenitic stainless steel samples were treated via gaseous nitriding at low temperature (430 °C) to obtain a single expanded austenite layer (S-phase). The structural phases were characterized via both optical microscopy and X-ray diffraction. Microhardness and dry-sliding wear behavior were investigated via scanning electron microscopy, electron probe of microanalysis, Vickers indentation tester, and ball-on-flat wear tester, respectively. The wear of the substrate AISI 316 steel was severe and characterized by strong adhesion, abrasion, and spallation, while the wear of the S-phase layer was mild and dominated by slight abrasion. Furthermore, the corrosion properties were investigated via potentiodynamic polarization testing in 3.5% NaCl solution. The results show that the S-phase layers was produced at low nitrided temperature with improved wear resistance as well as improved corrosion resistance. •Gaseous nitriding at 430 °C produced a S-phase layer with thickness of 7–9 μm.•The maximum surface microhardness of 1100 HV0.05 was obtained.•The corrosion resistance was improved by gaseous nitriding.•The wear resistance was enhanced significantly by gaseous nitriding.</description><subject>Abrasion</subject><subject>Adhesive strength</subject><subject>AISI 316 sieve</subject><subject>Austenitic stainless steels</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Corrosive wear</subject><subject>Diamond pyramid hardness tests</subject><subject>Electron probes</subject><subject>Frictional wear</subject><subject>Low temperature</subject><subject>Low-temperature nitriding</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Nitriding</subject><subject>Optical microscopy</subject><subject>Scanning electron microscopy</subject><subject>Sliding friction</subject><subject>Spallation</subject><subject>Substrates</subject><subject>Wear resistance</subject><subject>X-ray diffraction</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQQKed51stsnuzVL8UxA8qOeQTSaSopuaZCt-e1OqZ0_DwHtv5v0IuWRQM2DielOnKToTdK4bYH0NrIamOyIz1sm-4ryVx2QGzUJWXS-bU3KW0gYAmOzbGbHLIerkd0gjJp-yHg1SPVpqQowh-TDSbQxbjNljosHR5fp5TTkTNHksrp3X9D18VRk_ikjnKSJ90wnDlOjoc_TWj2_n5MTp94QXv3NOXu9uX1YP1ePT_Xq1fKwMbyFXzhkQnRZoNZdmGLjo5MClFQIdWOPYYDgIKKuVRojWsg6lAGaxd82iAz4nV4fc8vLnhCmrTZjiWE6qpgHOABZSFpU4qEwpmCI6tY3-Q8dvxUDtiaqN-iOq9kQVMFWIFuPNwYilw85jVMl4LMCsj2iyssH_F_EDdJWEOg</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Wang, Xingwei</creator><creator>Liu, Zhongyu</creator><creator>Chen, Yangyang</creator><creator>Sun, Jinquan</creator><creator>He, Qingkun</creator><creator>Liu, Qiancheng</creator><creator>Liu, Guozhi</creator><creator>Xie, Kun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190315</creationdate><title>Abrasive resistance and corrosion properties of AISI 316 sieve via low-temperature gaseous nitriding</title><author>Wang, Xingwei ; Liu, Zhongyu ; Chen, Yangyang ; Sun, Jinquan ; He, Qingkun ; Liu, Qiancheng ; Liu, Guozhi ; Xie, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ffc068a6eda37cbb3687b37d66ef0dcf1bc306066ed7c664d18e7601de9f25803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abrasion</topic><topic>Adhesive strength</topic><topic>AISI 316 sieve</topic><topic>Austenitic stainless steels</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Corrosive wear</topic><topic>Diamond pyramid hardness tests</topic><topic>Electron probes</topic><topic>Frictional wear</topic><topic>Low temperature</topic><topic>Low-temperature nitriding</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Nitriding</topic><topic>Optical microscopy</topic><topic>Scanning electron microscopy</topic><topic>Sliding friction</topic><topic>Spallation</topic><topic>Substrates</topic><topic>Wear resistance</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xingwei</creatorcontrib><creatorcontrib>Liu, Zhongyu</creatorcontrib><creatorcontrib>Chen, Yangyang</creatorcontrib><creatorcontrib>Sun, Jinquan</creatorcontrib><creatorcontrib>He, Qingkun</creatorcontrib><creatorcontrib>Liu, Qiancheng</creatorcontrib><creatorcontrib>Liu, Guozhi</creatorcontrib><creatorcontrib>Xie, Kun</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xingwei</au><au>Liu, Zhongyu</au><au>Chen, Yangyang</au><au>Sun, Jinquan</au><au>He, Qingkun</au><au>Liu, Qiancheng</au><au>Liu, Guozhi</au><au>Xie, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abrasive resistance and corrosion properties of AISI 316 sieve via low-temperature gaseous nitriding</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>361</volume><spage>349</spage><epage>356</epage><pages>349-356</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>AISI 316 austenitic stainless steel samples were treated via gaseous nitriding at low temperature (430 °C) to obtain a single expanded austenite layer (S-phase). The structural phases were characterized via both optical microscopy and X-ray diffraction. Microhardness and dry-sliding wear behavior were investigated via scanning electron microscopy, electron probe of microanalysis, Vickers indentation tester, and ball-on-flat wear tester, respectively. The wear of the substrate AISI 316 steel was severe and characterized by strong adhesion, abrasion, and spallation, while the wear of the S-phase layer was mild and dominated by slight abrasion. Furthermore, the corrosion properties were investigated via potentiodynamic polarization testing in 3.5% NaCl solution. The results show that the S-phase layers was produced at low nitrided temperature with improved wear resistance as well as improved corrosion resistance. •Gaseous nitriding at 430 °C produced a S-phase layer with thickness of 7–9 μm.•The maximum surface microhardness of 1100 HV0.05 was obtained.•The corrosion resistance was improved by gaseous nitriding.•The wear resistance was enhanced significantly by gaseous nitriding.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2019.01.028</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2019-03, Vol.361, p.349-356
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2203100577
source Elsevier ScienceDirect Journals Complete
subjects Abrasion
Adhesive strength
AISI 316 sieve
Austenitic stainless steels
Corrosion
Corrosion resistance
Corrosive wear
Diamond pyramid hardness tests
Electron probes
Frictional wear
Low temperature
Low-temperature nitriding
Microscopes
Microscopy
Nitriding
Optical microscopy
Scanning electron microscopy
Sliding friction
Spallation
Substrates
Wear resistance
X-ray diffraction
title Abrasive resistance and corrosion properties of AISI 316 sieve via low-temperature gaseous nitriding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abrasive%20resistance%20and%20corrosion%20properties%20of%20AISI%20316%20sieve%20via%20low-temperature%20gaseous%20nitriding&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Wang,%20Xingwei&rft.date=2019-03-15&rft.volume=361&rft.spage=349&rft.epage=356&rft.pages=349-356&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2019.01.028&rft_dat=%3Cproquest_cross%3E2203100577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203100577&rft_id=info:pmid/&rft_els_id=S0257897219300374&rfr_iscdi=true