Consistency of wave power at a location in the coastal waters of central eastern Arabian Sea
Wave energy assessment at a regional scale is required for planning installation of wave energy converters. Based on continuously measured wave data at 14-m water depth in the central eastern Arabian Sea from January 2011 to December 2017, the temporal distribution of wave power potential is studied...
Gespeichert in:
Veröffentlicht in: | Ocean dynamics 2019-05, Vol.69 (5), p.543-560 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wave energy assessment at a regional scale is required for planning installation of wave energy converters. Based on continuously measured wave data at 14-m water depth in the central eastern Arabian Sea from January 2011 to December 2017, the temporal distribution of wave power potential is studied in detail along with statistical analysis of the wave power and wave parameters. Long-term variability in wave power is examined based on reanalysis data from 1979 to 2017. The study also evaluates the wave power technologies, such as Oyster, WaveDragon, and WaveStar for the study location. Significant inter-annual variations in the wave power are observed from June to September due to the fluctuations in the Indian summer monsoon. The annual mean wave power is 7.85 kW/m with year-to-year variability up to 13% from 2011 to 2017. During 24.7% of the time (~ 90 days) in a year, the wave power is more than 10 kW/m and is less than 5 kW/m during 68% of the time in a year. Most (90.4%) of the available wave power is from a narrow band between west and southwest. A spatial variability of ~ 12% in the annual mean wave power is observed along the central eastern Arabian Sea based on the measured wave data at three locations in 14–15-m water depth. The study shows that WaveDragon and WaveStar energy converter produces the electric power during 81 and 85% of the time in a year, whereas Oyster gives output during 59% of the time. The capacity factor of WaveStar is high (27–34%) for the study area compared with other technologies considered in the study. |
---|---|
ISSN: | 1616-7341 1616-7228 |
DOI: | 10.1007/s10236-019-01267-1 |