Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures
Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representat...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2020-04, Vol.166 (1), p.11-27 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Acta applicandae mathematicae |
container_volume | 166 |
creator | Gabardo, Jean-Pierre Han, Deguang |
description | Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure
F
:
Ω
→
B
(
H
)
has an integral representation of the form
F
(
E
)
=
∑
k
=
1
m
∫
E
G
k
(
ω
)
⊗
G
k
(
ω
)
d
μ
(
ω
)
for some weakly measurable maps
G
k
(
1
≤
k
≤
m
)
from a measurable space
Ω
to a Hilbert space ℋ and some positive measure
μ
on
Ω
. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic. |
doi_str_mv | 10.1007/s10440-019-00252-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202949861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202949861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c98c53699677f4ca6e0b49323da946316b14bb84bfc5935535a25f5d48cc247d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlcyZLKVYLSqVUtyGTyZSpbaYmGcF_7-gI7ly9xT33PjgIXVK4pgDFTaIgBBCgmgAwyYg6QhMqC0Y0cHWMJkBVQcohP0VnKW0BgGulJmg9j3bvE7ahxvM2tNmTlQ1veBGy30S7wyt_iD75kG1uu5Bw1-DnLrW5_fB4efDR5i6SV7vrfY2fvE39QJ-jk8bukr_4vVP0Mr9bzx7I4_J-Mbt9JI4VkInTpZNcaa2KohHOKg-V0Jzx2mqhOFUVFVVViqpxUnMpubRMNrIWpXNMFDWfoqtx9xC7996nbLZdH8Pw0jAGTAtdKjpQbKRc7FKKvjGH2O5t_DQUzLc9M9ozgx3zY8-oocTHUhrgsPHxb_qf1heqfHHJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202949861</pqid></control><display><type>article</type><title>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</title><source>Springer Nature - Complete Springer Journals</source><creator>Gabardo, Jean-Pierre ; Han, Deguang</creator><creatorcontrib>Gabardo, Jean-Pierre ; Han, Deguang</creatorcontrib><description>Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure
F
:
Ω
→
B
(
H
)
has an integral representation of the form
F
(
E
)
=
∑
k
=
1
m
∫
E
G
k
(
ω
)
⊗
G
k
(
ω
)
d
μ
(
ω
)
for some weakly measurable maps
G
k
(
1
≤
k
≤
m
)
from a measurable space
Ω
to a Hilbert space ℋ and some positive measure
μ
on
Ω
. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-019-00252-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Hilbert space ; Integrals ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Representations</subject><ispartof>Acta applicandae mathematicae, 2020-04, Vol.166 (1), p.11-27</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Acta Applicandae Mathematicae is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c98c53699677f4ca6e0b49323da946316b14bb84bfc5935535a25f5d48cc247d3</cites><orcidid>0000-0002-1209-6965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-019-00252-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-019-00252-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Han, Deguang</creatorcontrib><title>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure
F
:
Ω
→
B
(
H
)
has an integral representation of the form
F
(
E
)
=
∑
k
=
1
m
∫
E
G
k
(
ω
)
⊗
G
k
(
ω
)
d
μ
(
ω
)
for some weakly measurable maps
G
k
(
1
≤
k
≤
m
)
from a measurable space
Ω
to a Hilbert space ℋ and some positive measure
μ
on
Ω
. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Hilbert space</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Representations</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlcyZLKVYLSqVUtyGTyZSpbaYmGcF_7-gI7ly9xT33PjgIXVK4pgDFTaIgBBCgmgAwyYg6QhMqC0Y0cHWMJkBVQcohP0VnKW0BgGulJmg9j3bvE7ahxvM2tNmTlQ1veBGy30S7wyt_iD75kG1uu5Bw1-DnLrW5_fB4efDR5i6SV7vrfY2fvE39QJ-jk8bukr_4vVP0Mr9bzx7I4_J-Mbt9JI4VkInTpZNcaa2KohHOKg-V0Jzx2mqhOFUVFVVViqpxUnMpubRMNrIWpXNMFDWfoqtx9xC7996nbLZdH8Pw0jAGTAtdKjpQbKRc7FKKvjGH2O5t_DQUzLc9M9ozgx3zY8-oocTHUhrgsPHxb_qf1heqfHHJ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gabardo, Jean-Pierre</creator><creator>Han, Deguang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1209-6965</orcidid></search><sort><creationdate>20200401</creationdate><title>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</title><author>Gabardo, Jean-Pierre ; Han, Deguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c98c53699677f4ca6e0b49323da946316b14bb84bfc5935535a25f5d48cc247d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Hilbert space</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Han, Deguang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabardo, Jean-Pierre</au><au>Han, Deguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>166</volume><issue>1</issue><spage>11</spage><epage>27</epage><pages>11-27</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure
F
:
Ω
→
B
(
H
)
has an integral representation of the form
F
(
E
)
=
∑
k
=
1
m
∫
E
G
k
(
ω
)
⊗
G
k
(
ω
)
d
μ
(
ω
)
for some weakly measurable maps
G
k
(
1
≤
k
≤
m
)
from a measurable space
Ω
to a Hilbert space ℋ and some positive measure
μ
on
Ω
. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-019-00252-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1209-6965</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2020-04, Vol.166 (1), p.11-27 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_journals_2202949861 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Hilbert space Integrals Mathematics Mathematics and Statistics Operators (mathematics) Partial Differential Equations Probability Theory and Stochastic Processes Representations |
title | Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frames%20and%20Finite-Rank%20Integral%20Representations%20of%20Positive%20Operator-Valued%20Measures&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Gabardo,%20Jean-Pierre&rft.date=2020-04-01&rft.volume=166&rft.issue=1&rft.spage=11&rft.epage=27&rft.pages=11-27&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-019-00252-6&rft_dat=%3Cproquest_cross%3E2202949861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202949861&rft_id=info:pmid/&rfr_iscdi=true |