Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures

Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2020-04, Vol.166 (1), p.11-27
Hauptverfasser: Gabardo, Jean-Pierre, Han, Deguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 11
container_title Acta applicandae mathematicae
container_volume 166
creator Gabardo, Jean-Pierre
Han, Deguang
description Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure F : Ω → B ( H ) has an integral representation of the form F ( E ) = ∑ k = 1 m ∫ E G k ( ω ) ⊗ G k ( ω ) d μ ( ω ) for some weakly measurable maps G k ( 1 ≤ k ≤ m ) from a measurable space Ω to a Hilbert space ℋ and some positive measure μ on Ω . Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.
doi_str_mv 10.1007/s10440-019-00252-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202949861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202949861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c98c53699677f4ca6e0b49323da946316b14bb84bfc5935535a25f5d48cc247d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlcyZLKVYLSqVUtyGTyZSpbaYmGcF_7-gI7ly9xT33PjgIXVK4pgDFTaIgBBCgmgAwyYg6QhMqC0Y0cHWMJkBVQcohP0VnKW0BgGulJmg9j3bvE7ahxvM2tNmTlQ1veBGy30S7wyt_iD75kG1uu5Bw1-DnLrW5_fB4efDR5i6SV7vrfY2fvE39QJ-jk8bukr_4vVP0Mr9bzx7I4_J-Mbt9JI4VkInTpZNcaa2KohHOKg-V0Jzx2mqhOFUVFVVViqpxUnMpubRMNrIWpXNMFDWfoqtx9xC7996nbLZdH8Pw0jAGTAtdKjpQbKRc7FKKvjGH2O5t_DQUzLc9M9ozgx3zY8-oocTHUhrgsPHxb_qf1heqfHHJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202949861</pqid></control><display><type>article</type><title>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</title><source>Springer Nature - Complete Springer Journals</source><creator>Gabardo, Jean-Pierre ; Han, Deguang</creator><creatorcontrib>Gabardo, Jean-Pierre ; Han, Deguang</creatorcontrib><description>Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure F : Ω → B ( H ) has an integral representation of the form F ( E ) = ∑ k = 1 m ∫ E G k ( ω ) ⊗ G k ( ω ) d μ ( ω ) for some weakly measurable maps G k ( 1 ≤ k ≤ m ) from a measurable space Ω to a Hilbert space ℋ and some positive measure μ on Ω . Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-019-00252-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Hilbert space ; Integrals ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Representations</subject><ispartof>Acta applicandae mathematicae, 2020-04, Vol.166 (1), p.11-27</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Acta Applicandae Mathematicae is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c98c53699677f4ca6e0b49323da946316b14bb84bfc5935535a25f5d48cc247d3</cites><orcidid>0000-0002-1209-6965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-019-00252-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-019-00252-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Han, Deguang</creatorcontrib><title>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure F : Ω → B ( H ) has an integral representation of the form F ( E ) = ∑ k = 1 m ∫ E G k ( ω ) ⊗ G k ( ω ) d μ ( ω ) for some weakly measurable maps G k ( 1 ≤ k ≤ m ) from a measurable space Ω to a Hilbert space ℋ and some positive measure μ on Ω . Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Hilbert space</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Representations</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlcyZLKVYLSqVUtyGTyZSpbaYmGcF_7-gI7ly9xT33PjgIXVK4pgDFTaIgBBCgmgAwyYg6QhMqC0Y0cHWMJkBVQcohP0VnKW0BgGulJmg9j3bvE7ahxvM2tNmTlQ1veBGy30S7wyt_iD75kG1uu5Bw1-DnLrW5_fB4efDR5i6SV7vrfY2fvE39QJ-jk8bukr_4vVP0Mr9bzx7I4_J-Mbt9JI4VkInTpZNcaa2KohHOKg-V0Jzx2mqhOFUVFVVViqpxUnMpubRMNrIWpXNMFDWfoqtx9xC7996nbLZdH8Pw0jAGTAtdKjpQbKRc7FKKvjGH2O5t_DQUzLc9M9ozgx3zY8-oocTHUhrgsPHxb_qf1heqfHHJ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gabardo, Jean-Pierre</creator><creator>Han, Deguang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1209-6965</orcidid></search><sort><creationdate>20200401</creationdate><title>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</title><author>Gabardo, Jean-Pierre ; Han, Deguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c98c53699677f4ca6e0b49323da946316b14bb84bfc5935535a25f5d48cc247d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Hilbert space</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabardo, Jean-Pierre</creatorcontrib><creatorcontrib>Han, Deguang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabardo, Jean-Pierre</au><au>Han, Deguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>166</volume><issue>1</issue><spage>11</spage><epage>27</epage><pages>11-27</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure F : Ω → B ( H ) has an integral representation of the form F ( E ) = ∑ k = 1 m ∫ E G k ( ω ) ⊗ G k ( ω ) d μ ( ω ) for some weakly measurable maps G k ( 1 ≤ k ≤ m ) from a measurable space Ω to a Hilbert space ℋ and some positive measure μ on Ω . Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-019-00252-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1209-6965</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2020-04, Vol.166 (1), p.11-27
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_2202949861
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Hilbert space
Integrals
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial Differential Equations
Probability Theory and Stochastic Processes
Representations
title Frames and Finite-Rank Integral Representations of Positive Operator-Valued Measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frames%20and%20Finite-Rank%20Integral%20Representations%20of%20Positive%20Operator-Valued%20Measures&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Gabardo,%20Jean-Pierre&rft.date=2020-04-01&rft.volume=166&rft.issue=1&rft.spage=11&rft.epage=27&rft.pages=11-27&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-019-00252-6&rft_dat=%3Cproquest_cross%3E2202949861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202949861&rft_id=info:pmid/&rfr_iscdi=true