Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer

Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (14), p.8633-8640
Hauptverfasser: Wang, Zixing, Chu, Xiang, Xu, Zhong, Su, Hai, Yan, Cheng, Liu, Fangyan, Gu, Bingni, Huang, Haichao, Xiong, Da, Zhang, Hepeng, Deng, Weili, Zhang, Haitao, Yang, Weiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8640
container_issue 14
container_start_page 8633
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Wang, Zixing
Chu, Xiang
Xu, Zhong
Su, Hai
Yan, Cheng
Liu, Fangyan
Gu, Bingni
Huang, Haichao
Xiong, Da
Zhang, Hepeng
Deng, Weili
Zhang, Haitao
Yang, Weiqing
description Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of >1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors.
doi_str_mv 10.1039/C9TA01028A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202851637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202851637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOOZe_AQB34RqkrZp8jjG_AMDX-ZzuU1vXEbX1CRV9-2tTPS83PNwOJfzI-SaszvOcn2_0tsl40yo5RmZCVayrCq0PP_zSl2SRYx7NkkxJrWeEbP-SgEP2B1p5z9pxM5mrYtmB-ENafSda7OYIE1-HDAYGMC45EOkHw5o2iE1vreunyr6RNFaNIl6S53vaQrQR4vhilxY6CIufu-cvD6st6unbPPy-LxabjIjtExZA0qaUjLb8gJMZaqincYI3QAUUrVSlBKwKVuUsjINVMIqbMDYptBgDdf5nNyceofg30eMqd77MfTTy1qICUvJZV5NqdtTygQfY0BbD8EdIBxrzuofjvU_x_wbaIVnNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202851637</pqid></control><display><type>article</type><title>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Zixing ; Chu, Xiang ; Xu, Zhong ; Su, Hai ; Yan, Cheng ; Liu, Fangyan ; Gu, Bingni ; Huang, Haichao ; Xiong, Da ; Zhang, Hepeng ; Deng, Weili ; Zhang, Haitao ; Yang, Weiqing</creator><creatorcontrib>Wang, Zixing ; Chu, Xiang ; Xu, Zhong ; Su, Hai ; Yan, Cheng ; Liu, Fangyan ; Gu, Bingni ; Huang, Haichao ; Xiong, Da ; Zhang, Hepeng ; Deng, Weili ; Zhang, Haitao ; Yang, Weiqing</creatorcontrib><description>Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of &gt;1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA01028A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anions ; Bentonite ; Clay ; Confinement ; Discharge ; Electrolytes ; Energy conversion ; Energy storage ; Flux density ; High temperature ; High voltage ; High voltages ; Ionic liquids ; Low voltage ; Mud ; Open circuit voltage ; Pies ; Power supplies ; Solid state ; Supercapacitors ; Voltage ; Voltage drop</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8633-8640</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</citedby><cites>FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</cites><orcidid>0000-0001-8828-9862 ; 0000-0002-2057-7654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Xu, Zhong</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Xiong, Da</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><title>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of &gt;1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors.</description><subject>Anions</subject><subject>Bentonite</subject><subject>Clay</subject><subject>Confinement</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>High temperature</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Ionic liquids</subject><subject>Low voltage</subject><subject>Mud</subject><subject>Open circuit voltage</subject><subject>Pies</subject><subject>Power supplies</subject><subject>Solid state</subject><subject>Supercapacitors</subject><subject>Voltage</subject><subject>Voltage drop</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOOZe_AQB34RqkrZp8jjG_AMDX-ZzuU1vXEbX1CRV9-2tTPS83PNwOJfzI-SaszvOcn2_0tsl40yo5RmZCVayrCq0PP_zSl2SRYx7NkkxJrWeEbP-SgEP2B1p5z9pxM5mrYtmB-ENafSda7OYIE1-HDAYGMC45EOkHw5o2iE1vreunyr6RNFaNIl6S53vaQrQR4vhilxY6CIufu-cvD6st6unbPPy-LxabjIjtExZA0qaUjLb8gJMZaqincYI3QAUUrVSlBKwKVuUsjINVMIqbMDYptBgDdf5nNyceofg30eMqd77MfTTy1qICUvJZV5NqdtTygQfY0BbD8EdIBxrzuofjvU_x_wbaIVnNA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Zixing</creator><creator>Chu, Xiang</creator><creator>Xu, Zhong</creator><creator>Su, Hai</creator><creator>Yan, Cheng</creator><creator>Liu, Fangyan</creator><creator>Gu, Bingni</creator><creator>Huang, Haichao</creator><creator>Xiong, Da</creator><creator>Zhang, Hepeng</creator><creator>Deng, Weili</creator><creator>Zhang, Haitao</creator><creator>Yang, Weiqing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8828-9862</orcidid><orcidid>https://orcid.org/0000-0002-2057-7654</orcidid></search><sort><creationdate>2019</creationdate><title>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</title><author>Wang, Zixing ; Chu, Xiang ; Xu, Zhong ; Su, Hai ; Yan, Cheng ; Liu, Fangyan ; Gu, Bingni ; Huang, Haichao ; Xiong, Da ; Zhang, Hepeng ; Deng, Weili ; Zhang, Haitao ; Yang, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anions</topic><topic>Bentonite</topic><topic>Clay</topic><topic>Confinement</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>High temperature</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Ionic liquids</topic><topic>Low voltage</topic><topic>Mud</topic><topic>Open circuit voltage</topic><topic>Pies</topic><topic>Power supplies</topic><topic>Solid state</topic><topic>Supercapacitors</topic><topic>Voltage</topic><topic>Voltage drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Xu, Zhong</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Xiong, Da</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zixing</au><au>Chu, Xiang</au><au>Xu, Zhong</au><au>Su, Hai</au><au>Yan, Cheng</au><au>Liu, Fangyan</au><au>Gu, Bingni</au><au>Huang, Haichao</au><au>Xiong, Da</au><au>Zhang, Hepeng</au><au>Deng, Weili</au><au>Zhang, Haitao</au><au>Yang, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>14</issue><spage>8633</spage><epage>8640</epage><pages>8633-8640</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of &gt;1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA01028A</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8828-9862</orcidid><orcidid>https://orcid.org/0000-0002-2057-7654</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8633-8640
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2202851637
source Royal Society Of Chemistry Journals 2008-
subjects Anions
Bentonite
Clay
Confinement
Discharge
Electrolytes
Energy conversion
Energy storage
Flux density
High temperature
High voltage
High voltages
Ionic liquids
Low voltage
Mud
Open circuit voltage
Pies
Power supplies
Solid state
Supercapacitors
Voltage
Voltage drop
title Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20low%20self-discharge%20solid-state%20supercapacitors%20via%20the%20confinement%20effect%20of%20ion%20transfer&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Zixing&rft.date=2019&rft.volume=7&rft.issue=14&rft.spage=8633&rft.epage=8640&rft.pages=8633-8640&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA01028A&rft_dat=%3Cproquest_cross%3E2202851637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202851637&rft_id=info:pmid/&rfr_iscdi=true