Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer
Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-stat...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (14), p.8633-8640 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8640 |
---|---|
container_issue | 14 |
container_start_page | 8633 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Wang, Zixing Chu, Xiang Xu, Zhong Su, Hai Yan, Cheng Liu, Fangyan Gu, Bingni Huang, Haichao Xiong, Da Zhang, Hepeng Deng, Weili Zhang, Haitao Yang, Weiqing |
description | Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of >1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors. |
doi_str_mv | 10.1039/C9TA01028A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202851637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202851637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOOZe_AQB34RqkrZp8jjG_AMDX-ZzuU1vXEbX1CRV9-2tTPS83PNwOJfzI-SaszvOcn2_0tsl40yo5RmZCVayrCq0PP_zSl2SRYx7NkkxJrWeEbP-SgEP2B1p5z9pxM5mrYtmB-ENafSda7OYIE1-HDAYGMC45EOkHw5o2iE1vreunyr6RNFaNIl6S53vaQrQR4vhilxY6CIufu-cvD6st6unbPPy-LxabjIjtExZA0qaUjLb8gJMZaqincYI3QAUUrVSlBKwKVuUsjINVMIqbMDYptBgDdf5nNyceofg30eMqd77MfTTy1qICUvJZV5NqdtTygQfY0BbD8EdIBxrzuofjvU_x_wbaIVnNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202851637</pqid></control><display><type>article</type><title>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Zixing ; Chu, Xiang ; Xu, Zhong ; Su, Hai ; Yan, Cheng ; Liu, Fangyan ; Gu, Bingni ; Huang, Haichao ; Xiong, Da ; Zhang, Hepeng ; Deng, Weili ; Zhang, Haitao ; Yang, Weiqing</creator><creatorcontrib>Wang, Zixing ; Chu, Xiang ; Xu, Zhong ; Su, Hai ; Yan, Cheng ; Liu, Fangyan ; Gu, Bingni ; Huang, Haichao ; Xiong, Da ; Zhang, Hepeng ; Deng, Weili ; Zhang, Haitao ; Yang, Weiqing</creatorcontrib><description>Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of >1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA01028A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anions ; Bentonite ; Clay ; Confinement ; Discharge ; Electrolytes ; Energy conversion ; Energy storage ; Flux density ; High temperature ; High voltage ; High voltages ; Ionic liquids ; Low voltage ; Mud ; Open circuit voltage ; Pies ; Power supplies ; Solid state ; Supercapacitors ; Voltage ; Voltage drop</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8633-8640</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</citedby><cites>FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</cites><orcidid>0000-0001-8828-9862 ; 0000-0002-2057-7654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Xu, Zhong</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Xiong, Da</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><title>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of >1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors.</description><subject>Anions</subject><subject>Bentonite</subject><subject>Clay</subject><subject>Confinement</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>High temperature</subject><subject>High voltage</subject><subject>High voltages</subject><subject>Ionic liquids</subject><subject>Low voltage</subject><subject>Mud</subject><subject>Open circuit voltage</subject><subject>Pies</subject><subject>Power supplies</subject><subject>Solid state</subject><subject>Supercapacitors</subject><subject>Voltage</subject><subject>Voltage drop</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOOZe_AQB34RqkrZp8jjG_AMDX-ZzuU1vXEbX1CRV9-2tTPS83PNwOJfzI-SaszvOcn2_0tsl40yo5RmZCVayrCq0PP_zSl2SRYx7NkkxJrWeEbP-SgEP2B1p5z9pxM5mrYtmB-ENafSda7OYIE1-HDAYGMC45EOkHw5o2iE1vreunyr6RNFaNIl6S53vaQrQR4vhilxY6CIufu-cvD6st6unbPPy-LxabjIjtExZA0qaUjLb8gJMZaqincYI3QAUUrVSlBKwKVuUsjINVMIqbMDYptBgDdf5nNyceofg30eMqd77MfTTy1qICUvJZV5NqdtTygQfY0BbD8EdIBxrzuofjvU_x_wbaIVnNA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Zixing</creator><creator>Chu, Xiang</creator><creator>Xu, Zhong</creator><creator>Su, Hai</creator><creator>Yan, Cheng</creator><creator>Liu, Fangyan</creator><creator>Gu, Bingni</creator><creator>Huang, Haichao</creator><creator>Xiong, Da</creator><creator>Zhang, Hepeng</creator><creator>Deng, Weili</creator><creator>Zhang, Haitao</creator><creator>Yang, Weiqing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8828-9862</orcidid><orcidid>https://orcid.org/0000-0002-2057-7654</orcidid></search><sort><creationdate>2019</creationdate><title>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</title><author>Wang, Zixing ; Chu, Xiang ; Xu, Zhong ; Su, Hai ; Yan, Cheng ; Liu, Fangyan ; Gu, Bingni ; Huang, Haichao ; Xiong, Da ; Zhang, Hepeng ; Deng, Weili ; Zhang, Haitao ; Yang, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ba86c560fd14ac7c74d10229baa468d6256aeb5de667cba72f8ebacfb49afc193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anions</topic><topic>Bentonite</topic><topic>Clay</topic><topic>Confinement</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>High temperature</topic><topic>High voltage</topic><topic>High voltages</topic><topic>Ionic liquids</topic><topic>Low voltage</topic><topic>Mud</topic><topic>Open circuit voltage</topic><topic>Pies</topic><topic>Power supplies</topic><topic>Solid state</topic><topic>Supercapacitors</topic><topic>Voltage</topic><topic>Voltage drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Xu, Zhong</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Xiong, Da</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zixing</au><au>Chu, Xiang</au><au>Xu, Zhong</au><au>Su, Hai</au><au>Yan, Cheng</au><au>Liu, Fangyan</au><au>Gu, Bingni</au><au>Huang, Haichao</au><au>Xiong, Da</au><au>Zhang, Hepeng</au><au>Deng, Weili</au><au>Zhang, Haitao</au><au>Yang, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>14</issue><spage>8633</spage><epage>8640</epage><pages>8633-8640</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Apart from low energy density, the rapid self-discharge phenomenon also severely limits the application of supercapacitors in periodic energy storage and power supply. Herein, we proposed a novel ‘playing mud pies’ strategy to prepare the high-performance bentonite clay@ionic liquid based solid-state electrolyte (BISE), which can efficiently solve the self-discharge issue of supercapacitors. The BISE-based supercapacitors display an extremely low self-discharge behavior with an open circuit potential drop of only 28.9% within 60 h, much better than that of conventional supercapacitors (40.1%@12 h). More importantly, even at a high temperature of 75 °C, the supercapacitors can still present a low voltage decline of 40% within 12 h and can stably deliver a high voltage of >1.5 V, which guarantees high-temperature energy conversion and storage application. We further proved that the low self-discharge mechanism originates from the confinement effect of silicon–oxygen bonds of the clay, which suppress the shuttle effect of Fe ions and promote selective penetration of electrolyte anions. Consequently, the remarkable decrease of both the ohmic leakage and diffusion-controlled faradaic process could sharply weaken the self-discharge behavior. Based on the BISE, we also developed soft-packaged supercapacitors with a low self-discharge value of 23.6%@20 h. Evidently, our ‘playing mud pies’ method can open a route to exploit extremely low self-discharge supercapacitors at widely ranging temperatures for deep insight into the self-discharge mechanism and further for efficient energy storage of supercapacitors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA01028A</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8828-9862</orcidid><orcidid>https://orcid.org/0000-0002-2057-7654</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8633-8640 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2202851637 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anions Bentonite Clay Confinement Discharge Electrolytes Energy conversion Energy storage Flux density High temperature High voltage High voltages Ionic liquids Low voltage Mud Open circuit voltage Pies Power supplies Solid state Supercapacitors Voltage Voltage drop |
title | Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20low%20self-discharge%20solid-state%20supercapacitors%20via%20the%20confinement%20effect%20of%20ion%20transfer&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Zixing&rft.date=2019&rft.volume=7&rft.issue=14&rft.spage=8633&rft.epage=8640&rft.pages=8633-8640&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA01028A&rft_dat=%3Cproquest_cross%3E2202851637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202851637&rft_id=info:pmid/&rfr_iscdi=true |