Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes
Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene an...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (14), p.8085-8091 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8091 |
---|---|
container_issue | 14 |
container_start_page | 8085 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Ran, Jin Chu, Chengquan Pan, Ting Ding, Liang Cui, Peng Fu, Cen-Feng Zhang, Chuan-Ling Xu, Tongwen |
description | Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes. |
doi_str_mv | 10.1039/C9TA00952C |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202851431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202851431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EElXphV9giRuSYePETnysIl4Sgks5R46zaVMSO9guov-eQHnsZVejTzPaIeQ8gasEUnVdqtUSQAleHpEZBwEsz5Q8_ruL4pQsQtjCNAWAVGpGmidnmXHvukcbqfEuBNZ39rWzaxodrZ0LkcYN0hB13fVd3FNtGzqiH_BXcC1dez1u0CJzH12DrNYBGzrgUHttMZyRk1b3ARc_e05ebm9W5T17fL57KJePzKSSRyaLXPNMoUIAgzmHWhkltZjkJKtNa1qBQso2x7xuRF5orpIsVZCDShpsZTonFwff0bu3HYZYbd3O2ymy4hx4ISY8majLA_X9rce2Gn03aL-vEqi-iqz-i0w_ARauZgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202851431</pqid></control><display><type>article</type><title>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ran, Jin ; Chu, Chengquan ; Pan, Ting ; Ding, Liang ; Cui, Peng ; Fu, Cen-Feng ; Zhang, Chuan-Ling ; Xu, Tongwen</creator><creatorcontrib>Ran, Jin ; Chu, Chengquan ; Pan, Ting ; Ding, Liang ; Cui, Peng ; Fu, Cen-Feng ; Zhang, Chuan-Ling ; Xu, Tongwen</creatorcontrib><description>Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA00952C</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Benzene ; Cationic polymerization ; Covalence ; Crosslinking ; Desalination ; Graphene ; Intercalation ; Membrane permeability ; Membranes ; Nanofiltration ; Nanostructure ; Nanotechnology ; Polymers ; Purification ; Rejection ; Sodium chloride ; Stability ; Sulfonic acid ; Water purification ; Water treatment</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8085-8091</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</citedby><cites>FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</cites><orcidid>0000-0002-9221-5126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ran, Jin</creatorcontrib><creatorcontrib>Chu, Chengquan</creatorcontrib><creatorcontrib>Pan, Ting</creatorcontrib><creatorcontrib>Ding, Liang</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Fu, Cen-Feng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ling</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><title>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes.</description><subject>Benzene</subject><subject>Cationic polymerization</subject><subject>Covalence</subject><subject>Crosslinking</subject><subject>Desalination</subject><subject>Graphene</subject><subject>Intercalation</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Polymers</subject><subject>Purification</subject><subject>Rejection</subject><subject>Sodium chloride</subject><subject>Stability</subject><subject>Sulfonic acid</subject><subject>Water purification</subject><subject>Water treatment</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EElXphV9giRuSYePETnysIl4Sgks5R46zaVMSO9guov-eQHnsZVejTzPaIeQ8gasEUnVdqtUSQAleHpEZBwEsz5Q8_ruL4pQsQtjCNAWAVGpGmidnmXHvukcbqfEuBNZ39rWzaxodrZ0LkcYN0hB13fVd3FNtGzqiH_BXcC1dez1u0CJzH12DrNYBGzrgUHttMZyRk1b3ARc_e05ebm9W5T17fL57KJePzKSSRyaLXPNMoUIAgzmHWhkltZjkJKtNa1qBQso2x7xuRF5orpIsVZCDShpsZTonFwff0bu3HYZYbd3O2ymy4hx4ISY8majLA_X9rce2Gn03aL-vEqi-iqz-i0w_ARauZgA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ran, Jin</creator><creator>Chu, Chengquan</creator><creator>Pan, Ting</creator><creator>Ding, Liang</creator><creator>Cui, Peng</creator><creator>Fu, Cen-Feng</creator><creator>Zhang, Chuan-Ling</creator><creator>Xu, Tongwen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9221-5126</orcidid></search><sort><creationdate>2019</creationdate><title>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</title><author>Ran, Jin ; Chu, Chengquan ; Pan, Ting ; Ding, Liang ; Cui, Peng ; Fu, Cen-Feng ; Zhang, Chuan-Ling ; Xu, Tongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benzene</topic><topic>Cationic polymerization</topic><topic>Covalence</topic><topic>Crosslinking</topic><topic>Desalination</topic><topic>Graphene</topic><topic>Intercalation</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Polymers</topic><topic>Purification</topic><topic>Rejection</topic><topic>Sodium chloride</topic><topic>Stability</topic><topic>Sulfonic acid</topic><topic>Water purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Jin</creatorcontrib><creatorcontrib>Chu, Chengquan</creatorcontrib><creatorcontrib>Pan, Ting</creatorcontrib><creatorcontrib>Ding, Liang</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Fu, Cen-Feng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ling</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ran, Jin</au><au>Chu, Chengquan</au><au>Pan, Ting</au><au>Ding, Liang</au><au>Cui, Peng</au><au>Fu, Cen-Feng</au><au>Zhang, Chuan-Ling</au><au>Xu, Tongwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>14</issue><spage>8085</spage><epage>8091</epage><pages>8085-8091</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA00952C</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9221-5126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8085-8091 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2202851431 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Benzene Cationic polymerization Covalence Crosslinking Desalination Graphene Intercalation Membrane permeability Membranes Nanofiltration Nanostructure Nanotechnology Polymers Purification Rejection Sodium chloride Stability Sulfonic acid Water purification Water treatment |
title | Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-covalent%20cross-linking%20to%20boost%20the%20stability%20and%20permeability%20of%20graphene-oxide-based%20membranes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ran,%20Jin&rft.date=2019&rft.volume=7&rft.issue=14&rft.spage=8085&rft.epage=8091&rft.pages=8085-8091&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA00952C&rft_dat=%3Cproquest_cross%3E2202851431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202851431&rft_id=info:pmid/&rfr_iscdi=true |