Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes

Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (14), p.8085-8091
Hauptverfasser: Ran, Jin, Chu, Chengquan, Pan, Ting, Ding, Liang, Cui, Peng, Fu, Cen-Feng, Zhang, Chuan-Ling, Xu, Tongwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8091
container_issue 14
container_start_page 8085
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Ran, Jin
Chu, Chengquan
Pan, Ting
Ding, Liang
Cui, Peng
Fu, Cen-Feng
Zhang, Chuan-Ling
Xu, Tongwen
description Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes.
doi_str_mv 10.1039/C9TA00952C
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202851431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202851431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EElXphV9giRuSYePETnysIl4Sgks5R46zaVMSO9guov-eQHnsZVejTzPaIeQ8gasEUnVdqtUSQAleHpEZBwEsz5Q8_ruL4pQsQtjCNAWAVGpGmidnmXHvukcbqfEuBNZ39rWzaxodrZ0LkcYN0hB13fVd3FNtGzqiH_BXcC1dez1u0CJzH12DrNYBGzrgUHttMZyRk1b3ARc_e05ebm9W5T17fL57KJePzKSSRyaLXPNMoUIAgzmHWhkltZjkJKtNa1qBQso2x7xuRF5orpIsVZCDShpsZTonFwff0bu3HYZYbd3O2ymy4hx4ISY8majLA_X9rce2Gn03aL-vEqi-iqz-i0w_ARauZgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202851431</pqid></control><display><type>article</type><title>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ran, Jin ; Chu, Chengquan ; Pan, Ting ; Ding, Liang ; Cui, Peng ; Fu, Cen-Feng ; Zhang, Chuan-Ling ; Xu, Tongwen</creator><creatorcontrib>Ran, Jin ; Chu, Chengquan ; Pan, Ting ; Ding, Liang ; Cui, Peng ; Fu, Cen-Feng ; Zhang, Chuan-Ling ; Xu, Tongwen</creatorcontrib><description>Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA00952C</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Benzene ; Cationic polymerization ; Covalence ; Crosslinking ; Desalination ; Graphene ; Intercalation ; Membrane permeability ; Membranes ; Nanofiltration ; Nanostructure ; Nanotechnology ; Polymers ; Purification ; Rejection ; Sodium chloride ; Stability ; Sulfonic acid ; Water purification ; Water treatment</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8085-8091</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</citedby><cites>FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</cites><orcidid>0000-0002-9221-5126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Ran, Jin</creatorcontrib><creatorcontrib>Chu, Chengquan</creatorcontrib><creatorcontrib>Pan, Ting</creatorcontrib><creatorcontrib>Ding, Liang</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Fu, Cen-Feng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ling</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><title>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes.</description><subject>Benzene</subject><subject>Cationic polymerization</subject><subject>Covalence</subject><subject>Crosslinking</subject><subject>Desalination</subject><subject>Graphene</subject><subject>Intercalation</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Polymers</subject><subject>Purification</subject><subject>Rejection</subject><subject>Sodium chloride</subject><subject>Stability</subject><subject>Sulfonic acid</subject><subject>Water purification</subject><subject>Water treatment</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EElXphV9giRuSYePETnysIl4Sgks5R46zaVMSO9guov-eQHnsZVejTzPaIeQ8gasEUnVdqtUSQAleHpEZBwEsz5Q8_ruL4pQsQtjCNAWAVGpGmidnmXHvukcbqfEuBNZ39rWzaxodrZ0LkcYN0hB13fVd3FNtGzqiH_BXcC1dez1u0CJzH12DrNYBGzrgUHttMZyRk1b3ARc_e05ebm9W5T17fL57KJePzKSSRyaLXPNMoUIAgzmHWhkltZjkJKtNa1qBQso2x7xuRF5orpIsVZCDShpsZTonFwff0bu3HYZYbd3O2ymy4hx4ISY8majLA_X9rce2Gn03aL-vEqi-iqz-i0w_ARauZgA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ran, Jin</creator><creator>Chu, Chengquan</creator><creator>Pan, Ting</creator><creator>Ding, Liang</creator><creator>Cui, Peng</creator><creator>Fu, Cen-Feng</creator><creator>Zhang, Chuan-Ling</creator><creator>Xu, Tongwen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9221-5126</orcidid></search><sort><creationdate>2019</creationdate><title>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</title><author>Ran, Jin ; Chu, Chengquan ; Pan, Ting ; Ding, Liang ; Cui, Peng ; Fu, Cen-Feng ; Zhang, Chuan-Ling ; Xu, Tongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-687a249e9e00ce720b9c96a587a14bcfcf5e566f7e7bd578a29143907091def63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benzene</topic><topic>Cationic polymerization</topic><topic>Covalence</topic><topic>Crosslinking</topic><topic>Desalination</topic><topic>Graphene</topic><topic>Intercalation</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Polymers</topic><topic>Purification</topic><topic>Rejection</topic><topic>Sodium chloride</topic><topic>Stability</topic><topic>Sulfonic acid</topic><topic>Water purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Jin</creatorcontrib><creatorcontrib>Chu, Chengquan</creatorcontrib><creatorcontrib>Pan, Ting</creatorcontrib><creatorcontrib>Ding, Liang</creatorcontrib><creatorcontrib>Cui, Peng</creatorcontrib><creatorcontrib>Fu, Cen-Feng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ling</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ran, Jin</au><au>Chu, Chengquan</au><au>Pan, Ting</au><au>Ding, Liang</au><au>Cui, Peng</au><au>Fu, Cen-Feng</au><au>Zhang, Chuan-Ling</au><au>Xu, Tongwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>14</issue><spage>8085</spage><epage>8091</epage><pages>8085-8091</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Two dimensional (2D) membranes assembled from graphene oxide (GO) nanosheets are easily delaminated in water within few hours, posing a critical challenge for water purification applications. Herein, we propose to modify GO membranes' stability by intercalating ionic polymers rich in benzene and cationic imidazolium (or anionic sulfonic acid) moieties, which are able to cross-link neighbouring GO nanosheets via non-covalent interactions. The 2D C-GO (imidazolium intercalation) and A-GO membranes (sulfonic acid intercalation) in the solvated state can even maintain their regularity for long periods, while the solvated GO membrane immediately decomposes into nanosheets once soaked in water. For nanofiltration applications, the solvated C-GO and A-GO membranes show extraordinarily higher permeances of 1111 and 600 L m −2 h −1 respectively under 5 bar, in contrast to the original GO membrane with a moderate permeance of 65 L m −2 h −1 . For desalination, C-GO presents prominent advantages of a higher water flux of 2.49 L m −2 h −1 and rejection of 95% to NaCl over GO with a water flux of 1.66 L m −2 h −1 and a rejection of 76%. The non-covalent cross-linking paves a way to get access to highly stable and efficient transport lamellar membranes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA00952C</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9221-5126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (14), p.8085-8091
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2202851431
source Royal Society Of Chemistry Journals 2008-
subjects Benzene
Cationic polymerization
Covalence
Crosslinking
Desalination
Graphene
Intercalation
Membrane permeability
Membranes
Nanofiltration
Nanostructure
Nanotechnology
Polymers
Purification
Rejection
Sodium chloride
Stability
Sulfonic acid
Water purification
Water treatment
title Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-covalent%20cross-linking%20to%20boost%20the%20stability%20and%20permeability%20of%20graphene-oxide-based%20membranes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ran,%20Jin&rft.date=2019&rft.volume=7&rft.issue=14&rft.spage=8085&rft.epage=8091&rft.pages=8085-8091&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA00952C&rft_dat=%3Cproquest_cross%3E2202851431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202851431&rft_id=info:pmid/&rfr_iscdi=true