Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles

p-type Bi0.46Sb1.54Te3 samples containing nanoprecipitates are prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technique. The thermoelectric performance of Bi0.46Sb1.54Te3 is improved by the energy filtering effect induced by nanoprecipitates, leading to a high ZT value of 1.18...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-05, Vol.784, p.1276-1283
Hauptverfasser: Zhang, De, Lei, Jingdan, Guan, Weibao, Ma, Zheng, Wang, Chao, Zhang, Lijuan, Cheng, Zhenxiang, Wang, Yuanxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue
container_start_page 1276
container_title Journal of alloys and compounds
container_volume 784
creator Zhang, De
Lei, Jingdan
Guan, Weibao
Ma, Zheng
Wang, Chao
Zhang, Lijuan
Cheng, Zhenxiang
Wang, Yuanxu
description p-type Bi0.46Sb1.54Te3 samples containing nanoprecipitates are prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technique. The thermoelectric performance of Bi0.46Sb1.54Te3 is improved by the energy filtering effect induced by nanoprecipitates, leading to a high ZT value of 1.18 at 325 K. To further improve the thermoelectric performance of Bi0.46Sb1.54Te3, SiC nanoparticles are dispersed into Bi0.46Sb1.54Te3 matrix. The addition of SiC simultaneously increases the electrical conductivity and the Seebeck coefficient. Meanwhile, it also decreases the lattice thermal conductivity from 0.38 to 0.33 Wm−1K−1 for the 0.2 wt% SiC sample. Consequently, a maximum ZT value of 1.45 at 325 K is obtained for Bi0.46Sb1.54Te3 with the addition of 0.2 wt% SiC composites, which increases about 23% than the pristine sample. •Nanoprecipitates could be generated in the preparation process of BiSbTe.•Nanoprecipitates enhanced Seebeck coefficient and reduced thermal conductivity.•SiC nanoparticles could further enhance the ZT value of BiSbTe.
doi_str_mv 10.1016/j.jallcom.2019.01.084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202786081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819300921</els_id><sourcerecordid>2202786081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-efb800ab479c517b27dbf05b5e9394bda10b22326e40d6d89e92afaab8c5a9903</originalsourceid><addsrcrecordid>eNqFkD1vFDEQhi1EJI4kPyGSJepdxt4vmwbB6fiQIlEk1JbtHSde7a0X20G6Pj8cL5eCjmqKed53NA8hNwxqBqx_P9WTnmcbjjUHJmtgNYj2FdkxMTRV2_fyNdmB5F0lGiHekLcpTQCFbNiOPB-WR71YHGl-xHgMOKPN0Vu6YnQhHrcdDY5-9nfmHmm5E04f6GHB-HCizs8Zo18eKDpXchu46CWsEa1ffdYZE9XL3-5_kDu_P2M6Zm9nTFfkwuk54fXLvCQ_vxzu99-q2x9fv-8_3Va2GdpcoTMCQJt2kLZjg-HDaBx0pkPZyNaMmoHhvOE9tjD2o5AouXZaG2E7LSU0l-TduXeN4dcTpqym8BSXclJxDnwQPQhWqO5M2RhSiujUGv1Rx5NioDbhalIvwtUmXAFTRXjJfTznsLzw22NUyXrc3PriI6sx-P80_AFBNo7L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202786081</pqid></control><display><type>article</type><title>Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, De ; Lei, Jingdan ; Guan, Weibao ; Ma, Zheng ; Wang, Chao ; Zhang, Lijuan ; Cheng, Zhenxiang ; Wang, Yuanxu</creator><creatorcontrib>Zhang, De ; Lei, Jingdan ; Guan, Weibao ; Ma, Zheng ; Wang, Chao ; Zhang, Lijuan ; Cheng, Zhenxiang ; Wang, Yuanxu</creatorcontrib><description>p-type Bi0.46Sb1.54Te3 samples containing nanoprecipitates are prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technique. The thermoelectric performance of Bi0.46Sb1.54Te3 is improved by the energy filtering effect induced by nanoprecipitates, leading to a high ZT value of 1.18 at 325 K. To further improve the thermoelectric performance of Bi0.46Sb1.54Te3, SiC nanoparticles are dispersed into Bi0.46Sb1.54Te3 matrix. The addition of SiC simultaneously increases the electrical conductivity and the Seebeck coefficient. Meanwhile, it also decreases the lattice thermal conductivity from 0.38 to 0.33 Wm−1K−1 for the 0.2 wt% SiC sample. Consequently, a maximum ZT value of 1.45 at 325 K is obtained for Bi0.46Sb1.54Te3 with the addition of 0.2 wt% SiC composites, which increases about 23% than the pristine sample. •Nanoprecipitates could be generated in the preparation process of BiSbTe.•Nanoprecipitates enhanced Seebeck coefficient and reduced thermal conductivity.•SiC nanoparticles could further enhance the ZT value of BiSbTe.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.01.084</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>BiSbTe alloy ; Electrical resistivity ; Energy filtering ; Filtration ; Mechanical alloying ; Nanoparticles ; Nanoprecipitates ; Plasma sintering ; Seebeck effect ; SiC nanoparticles ; Spark plasma sintering ; Thermal conductivity ; Thermoelectric properties ; Thermoelectricity</subject><ispartof>Journal of alloys and compounds, 2019-05, Vol.784, p.1276-1283</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-efb800ab479c517b27dbf05b5e9394bda10b22326e40d6d89e92afaab8c5a9903</citedby><cites>FETCH-LOGICAL-c374t-efb800ab479c517b27dbf05b5e9394bda10b22326e40d6d89e92afaab8c5a9903</cites><orcidid>0000-0002-5986-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.01.084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Zhang, De</creatorcontrib><creatorcontrib>Lei, Jingdan</creatorcontrib><creatorcontrib>Guan, Weibao</creatorcontrib><creatorcontrib>Ma, Zheng</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zhang, Lijuan</creatorcontrib><creatorcontrib>Cheng, Zhenxiang</creatorcontrib><creatorcontrib>Wang, Yuanxu</creatorcontrib><title>Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles</title><title>Journal of alloys and compounds</title><description>p-type Bi0.46Sb1.54Te3 samples containing nanoprecipitates are prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technique. The thermoelectric performance of Bi0.46Sb1.54Te3 is improved by the energy filtering effect induced by nanoprecipitates, leading to a high ZT value of 1.18 at 325 K. To further improve the thermoelectric performance of Bi0.46Sb1.54Te3, SiC nanoparticles are dispersed into Bi0.46Sb1.54Te3 matrix. The addition of SiC simultaneously increases the electrical conductivity and the Seebeck coefficient. Meanwhile, it also decreases the lattice thermal conductivity from 0.38 to 0.33 Wm−1K−1 for the 0.2 wt% SiC sample. Consequently, a maximum ZT value of 1.45 at 325 K is obtained for Bi0.46Sb1.54Te3 with the addition of 0.2 wt% SiC composites, which increases about 23% than the pristine sample. •Nanoprecipitates could be generated in the preparation process of BiSbTe.•Nanoprecipitates enhanced Seebeck coefficient and reduced thermal conductivity.•SiC nanoparticles could further enhance the ZT value of BiSbTe.</description><subject>BiSbTe alloy</subject><subject>Electrical resistivity</subject><subject>Energy filtering</subject><subject>Filtration</subject><subject>Mechanical alloying</subject><subject>Nanoparticles</subject><subject>Nanoprecipitates</subject><subject>Plasma sintering</subject><subject>Seebeck effect</subject><subject>SiC nanoparticles</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric properties</subject><subject>Thermoelectricity</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vFDEQhi1EJI4kPyGSJepdxt4vmwbB6fiQIlEk1JbtHSde7a0X20G6Pj8cL5eCjmqKed53NA8hNwxqBqx_P9WTnmcbjjUHJmtgNYj2FdkxMTRV2_fyNdmB5F0lGiHekLcpTQCFbNiOPB-WR71YHGl-xHgMOKPN0Vu6YnQhHrcdDY5-9nfmHmm5E04f6GHB-HCizs8Zo18eKDpXchu46CWsEa1ffdYZE9XL3-5_kDu_P2M6Zm9nTFfkwuk54fXLvCQ_vxzu99-q2x9fv-8_3Va2GdpcoTMCQJt2kLZjg-HDaBx0pkPZyNaMmoHhvOE9tjD2o5AouXZaG2E7LSU0l-TduXeN4dcTpqym8BSXclJxDnwQPQhWqO5M2RhSiujUGv1Rx5NioDbhalIvwtUmXAFTRXjJfTznsLzw22NUyXrc3PriI6sx-P80_AFBNo7L</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>Zhang, De</creator><creator>Lei, Jingdan</creator><creator>Guan, Weibao</creator><creator>Ma, Zheng</creator><creator>Wang, Chao</creator><creator>Zhang, Lijuan</creator><creator>Cheng, Zhenxiang</creator><creator>Wang, Yuanxu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5986-1927</orcidid></search><sort><creationdate>20190505</creationdate><title>Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles</title><author>Zhang, De ; Lei, Jingdan ; Guan, Weibao ; Ma, Zheng ; Wang, Chao ; Zhang, Lijuan ; Cheng, Zhenxiang ; Wang, Yuanxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-efb800ab479c517b27dbf05b5e9394bda10b22326e40d6d89e92afaab8c5a9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BiSbTe alloy</topic><topic>Electrical resistivity</topic><topic>Energy filtering</topic><topic>Filtration</topic><topic>Mechanical alloying</topic><topic>Nanoparticles</topic><topic>Nanoprecipitates</topic><topic>Plasma sintering</topic><topic>Seebeck effect</topic><topic>SiC nanoparticles</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric properties</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, De</creatorcontrib><creatorcontrib>Lei, Jingdan</creatorcontrib><creatorcontrib>Guan, Weibao</creatorcontrib><creatorcontrib>Ma, Zheng</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zhang, Lijuan</creatorcontrib><creatorcontrib>Cheng, Zhenxiang</creatorcontrib><creatorcontrib>Wang, Yuanxu</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, De</au><au>Lei, Jingdan</au><au>Guan, Weibao</au><au>Ma, Zheng</au><au>Wang, Chao</au><au>Zhang, Lijuan</au><au>Cheng, Zhenxiang</au><au>Wang, Yuanxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-05-05</date><risdate>2019</risdate><volume>784</volume><spage>1276</spage><epage>1283</epage><pages>1276-1283</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>p-type Bi0.46Sb1.54Te3 samples containing nanoprecipitates are prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technique. The thermoelectric performance of Bi0.46Sb1.54Te3 is improved by the energy filtering effect induced by nanoprecipitates, leading to a high ZT value of 1.18 at 325 K. To further improve the thermoelectric performance of Bi0.46Sb1.54Te3, SiC nanoparticles are dispersed into Bi0.46Sb1.54Te3 matrix. The addition of SiC simultaneously increases the electrical conductivity and the Seebeck coefficient. Meanwhile, it also decreases the lattice thermal conductivity from 0.38 to 0.33 Wm−1K−1 for the 0.2 wt% SiC sample. Consequently, a maximum ZT value of 1.45 at 325 K is obtained for Bi0.46Sb1.54Te3 with the addition of 0.2 wt% SiC composites, which increases about 23% than the pristine sample. •Nanoprecipitates could be generated in the preparation process of BiSbTe.•Nanoprecipitates enhanced Seebeck coefficient and reduced thermal conductivity.•SiC nanoparticles could further enhance the ZT value of BiSbTe.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.01.084</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5986-1927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-05, Vol.784, p.1276-1283
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2202786081
source Access via ScienceDirect (Elsevier)
subjects BiSbTe alloy
Electrical resistivity
Energy filtering
Filtration
Mechanical alloying
Nanoparticles
Nanoprecipitates
Plasma sintering
Seebeck effect
SiC nanoparticles
Spark plasma sintering
Thermal conductivity
Thermoelectric properties
Thermoelectricity
title Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermoelectric%20performance%20of%20BiSbTe%20alloy:%20Energy%20filtering%20effect%20of%20nanoprecipitates%20and%20the%20effect%20of%20SiC%20nanoparticles&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zhang,%20De&rft.date=2019-05-05&rft.volume=784&rft.spage=1276&rft.epage=1283&rft.pages=1276-1283&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.01.084&rft_dat=%3Cproquest_cross%3E2202786081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202786081&rft_id=info:pmid/&rft_els_id=S0925838819300921&rfr_iscdi=true