Constant Angle Surfaces in Lorentzian Berger Spheres

In this work, we study helix spacelike and timelike surfaces in the Lorentzian Berger sphere S ε 3 , that is the three-dimensional sphere endowed with a 1-parameter family of Lorentzian metrics, obtained by deforming the round metric on S 3 along the fibers of the Hopf fibration S 3 → S 2 ( 1 / 2 )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2019-04, Vol.29 (2), p.1456-1478
Hauptverfasser: Onnis, Irene I., Passos Passamani, Apoena, Piu, Paola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1478
container_issue 2
container_start_page 1456
container_title The Journal of Geometric Analysis
container_volume 29
creator Onnis, Irene I.
Passos Passamani, Apoena
Piu, Paola
description In this work, we study helix spacelike and timelike surfaces in the Lorentzian Berger sphere S ε 3 , that is the three-dimensional sphere endowed with a 1-parameter family of Lorentzian metrics, obtained by deforming the round metric on S 3 along the fibers of the Hopf fibration S 3 → S 2 ( 1 / 2 ) by - ε 2 . Our main result provides a characterization of the helix surfaces in S ε 3 using the symmetries of the ambient space and a general helix in S ε 3 , with axis the infinitesimal generator of the Hopf fibers. Also, we construct some explicit examples of helix surfaces in S ε 3 .
doi_str_mv 10.1007/s12220-018-0044-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2202379486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339825</galeid><sourcerecordid>A707339825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1e97b258162aa8abba70380c8f7d2ea6d44aa61f21c3f330668a3cda521e8a0f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC562TZPOxx1r8goKHKngL0-2kbmmzNdke9NebsoInmUMm4X0mycPYNYcJBzC3iQshoARuS4CqKuGEjbhSdd6J99Pcg4JS10Kfs4uUNjmjZWVGrJp1IfUY-mIa1lsqFofosaFUtKGYd5FC_91iKO4orikWi_0HRUqX7MzjNtHV7zpmbw_3r7Oncv7y-DybzstGKtWXnGqzFMpyLRAtLpdoQFporDcrQahXVYWouRe8kV5K0NqibFaoBCeL4OWY3Qxz97H7PFDq3aY7xJCvdPmzQpq6sjqnJkNqjVtybfBdH7HJtaJd23SBfJvPpwaMlLUVKgN8AJrYpRTJu31sdxi_HAd3tOkGmy7bdEebDjIjBiblbMgu_p7yP_QDSr91lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202379486</pqid></control><display><type>article</type><title>Constant Angle Surfaces in Lorentzian Berger Spheres</title><source>Springer Nature - Complete Springer Journals</source><creator>Onnis, Irene I. ; Passos Passamani, Apoena ; Piu, Paola</creator><creatorcontrib>Onnis, Irene I. ; Passos Passamani, Apoena ; Piu, Paola</creatorcontrib><description>In this work, we study helix spacelike and timelike surfaces in the Lorentzian Berger sphere S ε 3 , that is the three-dimensional sphere endowed with a 1-parameter family of Lorentzian metrics, obtained by deforming the round metric on S 3 along the fibers of the Hopf fibration S 3 → S 2 ( 1 / 2 ) by - ε 2 . Our main result provides a characterization of the helix surfaces in S ε 3 using the symmetries of the ambient space and a general helix in S ε 3 , with axis the infinitesimal generator of the Hopf fibers. Also, we construct some explicit examples of helix surfaces in S ε 3 .</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-018-0044-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Deformation ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of Geometric Analysis, 2019-04, Vol.29 (2), p.1456-1478</ispartof><rights>Mathematica Josephina, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1e97b258162aa8abba70380c8f7d2ea6d44aa61f21c3f330668a3cda521e8a0f3</citedby><cites>FETCH-LOGICAL-c355t-1e97b258162aa8abba70380c8f7d2ea6d44aa61f21c3f330668a3cda521e8a0f3</cites><orcidid>0000-0003-0045-2173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-018-0044-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-018-0044-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Onnis, Irene I.</creatorcontrib><creatorcontrib>Passos Passamani, Apoena</creatorcontrib><creatorcontrib>Piu, Paola</creatorcontrib><title>Constant Angle Surfaces in Lorentzian Berger Spheres</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>In this work, we study helix spacelike and timelike surfaces in the Lorentzian Berger sphere S ε 3 , that is the three-dimensional sphere endowed with a 1-parameter family of Lorentzian metrics, obtained by deforming the round metric on S 3 along the fibers of the Hopf fibration S 3 → S 2 ( 1 / 2 ) by - ε 2 . Our main result provides a characterization of the helix surfaces in S ε 3 using the symmetries of the ambient space and a general helix in S ε 3 , with axis the infinitesimal generator of the Hopf fibers. Also, we construct some explicit examples of helix surfaces in S ε 3 .</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Deformation</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC562TZPOxx1r8goKHKngL0-2kbmmzNdke9NebsoInmUMm4X0mycPYNYcJBzC3iQshoARuS4CqKuGEjbhSdd6J99Pcg4JS10Kfs4uUNjmjZWVGrJp1IfUY-mIa1lsqFofosaFUtKGYd5FC_91iKO4orikWi_0HRUqX7MzjNtHV7zpmbw_3r7Oncv7y-DybzstGKtWXnGqzFMpyLRAtLpdoQFporDcrQahXVYWouRe8kV5K0NqibFaoBCeL4OWY3Qxz97H7PFDq3aY7xJCvdPmzQpq6sjqnJkNqjVtybfBdH7HJtaJd23SBfJvPpwaMlLUVKgN8AJrYpRTJu31sdxi_HAd3tOkGmy7bdEebDjIjBiblbMgu_p7yP_QDSr91lw</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Onnis, Irene I.</creator><creator>Passos Passamani, Apoena</creator><creator>Piu, Paola</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0003-0045-2173</orcidid></search><sort><creationdate>20190415</creationdate><title>Constant Angle Surfaces in Lorentzian Berger Spheres</title><author>Onnis, Irene I. ; Passos Passamani, Apoena ; Piu, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1e97b258162aa8abba70380c8f7d2ea6d44aa61f21c3f330668a3cda521e8a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Deformation</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onnis, Irene I.</creatorcontrib><creatorcontrib>Passos Passamani, Apoena</creatorcontrib><creatorcontrib>Piu, Paola</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onnis, Irene I.</au><au>Passos Passamani, Apoena</au><au>Piu, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant Angle Surfaces in Lorentzian Berger Spheres</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2019-04-15</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>1456</spage><epage>1478</epage><pages>1456-1478</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this work, we study helix spacelike and timelike surfaces in the Lorentzian Berger sphere S ε 3 , that is the three-dimensional sphere endowed with a 1-parameter family of Lorentzian metrics, obtained by deforming the round metric on S 3 along the fibers of the Hopf fibration S 3 → S 2 ( 1 / 2 ) by - ε 2 . Our main result provides a characterization of the helix surfaces in S ε 3 using the symmetries of the ambient space and a general helix in S ε 3 , with axis the infinitesimal generator of the Hopf fibers. Also, we construct some explicit examples of helix surfaces in S ε 3 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-018-0044-0</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0045-2173</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2019-04, Vol.29 (2), p.1456-1478
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2202379486
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Deformation
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title Constant Angle Surfaces in Lorentzian Berger Spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20Angle%20Surfaces%20in%20Lorentzian%20Berger%20Spheres&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Onnis,%20Irene%20I.&rft.date=2019-04-15&rft.volume=29&rft.issue=2&rft.spage=1456&rft.epage=1478&rft.pages=1456-1478&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-018-0044-0&rft_dat=%3Cgale_proqu%3EA707339825%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202379486&rft_id=info:pmid/&rft_galeid=A707339825&rfr_iscdi=true