Bottom‐Up Grown 2D InSb Nanostructures

Low‐dimensional high‐quality InSb materials are promising candidates for next‐generation quantum devices due to the high carrier mobility, low effective mass, and large g‐factor of the heavy element compound InSb. Various quantum phenomena are demonstrated in InSb 2D electron gases and nanowires. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-04, Vol.31 (14), p.e1808181-n/a
Hauptverfasser: Gazibegovic, Sasa, Badawy, Ghada, Buckers, Thijs L. J., Leubner, Philipp, Shen, Jie, de Vries, Folkert K., Koelling, Sebastian, Kouwenhoven, Leo P., Verheijen, Marcel A., Bakkers, Erik P. A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e1808181
container_title Advanced materials (Weinheim)
container_volume 31
creator Gazibegovic, Sasa
Badawy, Ghada
Buckers, Thijs L. J.
Leubner, Philipp
Shen, Jie
de Vries, Folkert K.
Koelling, Sebastian
Kouwenhoven, Leo P.
Verheijen, Marcel A.
Bakkers, Erik P. A. M.
description Low‐dimensional high‐quality InSb materials are promising candidates for next‐generation quantum devices due to the high carrier mobility, low effective mass, and large g‐factor of the heavy element compound InSb. Various quantum phenomena are demonstrated in InSb 2D electron gases and nanowires. A combination of the best features of these two systems (pristine nanoscale and flexible design) is desirable to realize, e.g., the multiterminal topological Josephson device. Here, controlled growth of 2D nanostructures, nanoflakes, on an InSb platform is demonstrated. An assembly of nanoflakes with various dimensions and morphologies, thinner than the Bohr radius of InSb, are fabricated. Importantly, the growth of either nanowires or nanoflakes can be enforced experimentally by setting growth and substrate design parameters properly. Hall bar measurements on the nanostructures yield mobilities up to ≈20 000 cm2 V−1 s−1 and detect quantum Hall plateaus. This allows to see the system as a viable nanoscale 2D platform for future quantum devices. Low‐dimensional high‐quality InSb materials are promising candidates for various next‐generation devices due to the high carrier mobility, low effective mass, and large g‐factor of this heavy element compound. Controlled growth of “free‐standing” 2D InSb nanoflakes is realized by setting growth and substrate design parameters. Electronic assessment of the material marks this system as a viable nanoscale 2D platform for future quantum devices, thermal rectifiers, field emitters, infrared detectors, etc.
doi_str_mv 10.1002/adma.201808181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2201708386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201708386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-c0867014065324a4f8008084eba8d8c259bbb5dc7f9a41c8d1c91e339a650f983</originalsourceid><addsrcrecordid>eNqFkEFPwjAUgBujEUSvHs0SL16Gr-3atUcERRLUg3Juuq5LIGzFdgvhxk_wN_pLHAHx6KmXr99770PoGkMfA5B7nZe6TwALEFjgE9TFjOA4AclOURckZbHkieigixAWACA58HPUoZCmkgrWRXcPrq5d-b39mq2isXfrKiKjaFK9Z9GrrlyofWPqxttwic4KvQz26vD20Ozp8WP4HE_fxpPhYBobmlIcGxA8BZwAZ5QkOikEQLtbYjMtcmEIk1mWsdykhdQJNiLHRmJLqdScQSEF7aHbvXfl3WdjQ60WrvFVO1KR9s4UBBW8pfp7yngXgreFWvl5qf1GYVC7MGoXRh3DtB9uDtomK21-xH9LtIDcA-v50m7-0anB6GXwJ_8BX6xtLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201708386</pqid></control><display><type>article</type><title>Bottom‐Up Grown 2D InSb Nanostructures</title><source>Wiley Online Library</source><creator>Gazibegovic, Sasa ; Badawy, Ghada ; Buckers, Thijs L. J. ; Leubner, Philipp ; Shen, Jie ; de Vries, Folkert K. ; Koelling, Sebastian ; Kouwenhoven, Leo P. ; Verheijen, Marcel A. ; Bakkers, Erik P. A. M.</creator><creatorcontrib>Gazibegovic, Sasa ; Badawy, Ghada ; Buckers, Thijs L. J. ; Leubner, Philipp ; Shen, Jie ; de Vries, Folkert K. ; Koelling, Sebastian ; Kouwenhoven, Leo P. ; Verheijen, Marcel A. ; Bakkers, Erik P. A. M.</creatorcontrib><description>Low‐dimensional high‐quality InSb materials are promising candidates for next‐generation quantum devices due to the high carrier mobility, low effective mass, and large g‐factor of the heavy element compound InSb. Various quantum phenomena are demonstrated in InSb 2D electron gases and nanowires. A combination of the best features of these two systems (pristine nanoscale and flexible design) is desirable to realize, e.g., the multiterminal topological Josephson device. Here, controlled growth of 2D nanostructures, nanoflakes, on an InSb platform is demonstrated. An assembly of nanoflakes with various dimensions and morphologies, thinner than the Bohr radius of InSb, are fabricated. Importantly, the growth of either nanowires or nanoflakes can be enforced experimentally by setting growth and substrate design parameters properly. Hall bar measurements on the nanostructures yield mobilities up to ≈20 000 cm2 V−1 s−1 and detect quantum Hall plateaus. This allows to see the system as a viable nanoscale 2D platform for future quantum devices. Low‐dimensional high‐quality InSb materials are promising candidates for various next‐generation devices due to the high carrier mobility, low effective mass, and large g‐factor of this heavy element compound. Controlled growth of “free‐standing” 2D InSb nanoflakes is realized by setting growth and substrate design parameters. Electronic assessment of the material marks this system as a viable nanoscale 2D platform for future quantum devices, thermal rectifiers, field emitters, infrared detectors, etc.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201808181</identifier><identifier>PMID: 30779385</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier mobility ; Design parameters ; free‐standing ; Heavy elements ; high mobility ; Indium antimonide ; InSb ; Intermetallic compounds ; Materials science ; Mathematical morphology ; nanoflakes ; Nanostructure ; Nanowires ; Quantum phenomena ; Substrates</subject><ispartof>Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1808181-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-c0867014065324a4f8008084eba8d8c259bbb5dc7f9a41c8d1c91e339a650f983</citedby><cites>FETCH-LOGICAL-c3731-c0867014065324a4f8008084eba8d8c259bbb5dc7f9a41c8d1c91e339a650f983</cites><orcidid>0000-0002-2740-9688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201808181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201808181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30779385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gazibegovic, Sasa</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Buckers, Thijs L. J.</creatorcontrib><creatorcontrib>Leubner, Philipp</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>de Vries, Folkert K.</creatorcontrib><creatorcontrib>Koelling, Sebastian</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Verheijen, Marcel A.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><title>Bottom‐Up Grown 2D InSb Nanostructures</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Low‐dimensional high‐quality InSb materials are promising candidates for next‐generation quantum devices due to the high carrier mobility, low effective mass, and large g‐factor of the heavy element compound InSb. Various quantum phenomena are demonstrated in InSb 2D electron gases and nanowires. A combination of the best features of these two systems (pristine nanoscale and flexible design) is desirable to realize, e.g., the multiterminal topological Josephson device. Here, controlled growth of 2D nanostructures, nanoflakes, on an InSb platform is demonstrated. An assembly of nanoflakes with various dimensions and morphologies, thinner than the Bohr radius of InSb, are fabricated. Importantly, the growth of either nanowires or nanoflakes can be enforced experimentally by setting growth and substrate design parameters properly. Hall bar measurements on the nanostructures yield mobilities up to ≈20 000 cm2 V−1 s−1 and detect quantum Hall plateaus. This allows to see the system as a viable nanoscale 2D platform for future quantum devices. Low‐dimensional high‐quality InSb materials are promising candidates for various next‐generation devices due to the high carrier mobility, low effective mass, and large g‐factor of this heavy element compound. Controlled growth of “free‐standing” 2D InSb nanoflakes is realized by setting growth and substrate design parameters. Electronic assessment of the material marks this system as a viable nanoscale 2D platform for future quantum devices, thermal rectifiers, field emitters, infrared detectors, etc.</description><subject>Carrier mobility</subject><subject>Design parameters</subject><subject>free‐standing</subject><subject>Heavy elements</subject><subject>high mobility</subject><subject>Indium antimonide</subject><subject>InSb</subject><subject>Intermetallic compounds</subject><subject>Materials science</subject><subject>Mathematical morphology</subject><subject>nanoflakes</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Quantum phenomena</subject><subject>Substrates</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUgBujEUSvHs0SL16Gr-3atUcERRLUg3Juuq5LIGzFdgvhxk_wN_pLHAHx6KmXr99770PoGkMfA5B7nZe6TwALEFjgE9TFjOA4AclOURckZbHkieigixAWACA58HPUoZCmkgrWRXcPrq5d-b39mq2isXfrKiKjaFK9Z9GrrlyofWPqxttwic4KvQz26vD20Ozp8WP4HE_fxpPhYBobmlIcGxA8BZwAZ5QkOikEQLtbYjMtcmEIk1mWsdykhdQJNiLHRmJLqdScQSEF7aHbvXfl3WdjQ60WrvFVO1KR9s4UBBW8pfp7yngXgreFWvl5qf1GYVC7MGoXRh3DtB9uDtomK21-xH9LtIDcA-v50m7-0anB6GXwJ_8BX6xtLA</recordid><startdate>20190405</startdate><enddate>20190405</enddate><creator>Gazibegovic, Sasa</creator><creator>Badawy, Ghada</creator><creator>Buckers, Thijs L. J.</creator><creator>Leubner, Philipp</creator><creator>Shen, Jie</creator><creator>de Vries, Folkert K.</creator><creator>Koelling, Sebastian</creator><creator>Kouwenhoven, Leo P.</creator><creator>Verheijen, Marcel A.</creator><creator>Bakkers, Erik P. A. M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2740-9688</orcidid></search><sort><creationdate>20190405</creationdate><title>Bottom‐Up Grown 2D InSb Nanostructures</title><author>Gazibegovic, Sasa ; Badawy, Ghada ; Buckers, Thijs L. J. ; Leubner, Philipp ; Shen, Jie ; de Vries, Folkert K. ; Koelling, Sebastian ; Kouwenhoven, Leo P. ; Verheijen, Marcel A. ; Bakkers, Erik P. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-c0867014065324a4f8008084eba8d8c259bbb5dc7f9a41c8d1c91e339a650f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carrier mobility</topic><topic>Design parameters</topic><topic>free‐standing</topic><topic>Heavy elements</topic><topic>high mobility</topic><topic>Indium antimonide</topic><topic>InSb</topic><topic>Intermetallic compounds</topic><topic>Materials science</topic><topic>Mathematical morphology</topic><topic>nanoflakes</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Quantum phenomena</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gazibegovic, Sasa</creatorcontrib><creatorcontrib>Badawy, Ghada</creatorcontrib><creatorcontrib>Buckers, Thijs L. J.</creatorcontrib><creatorcontrib>Leubner, Philipp</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><creatorcontrib>de Vries, Folkert K.</creatorcontrib><creatorcontrib>Koelling, Sebastian</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Verheijen, Marcel A.</creatorcontrib><creatorcontrib>Bakkers, Erik P. A. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gazibegovic, Sasa</au><au>Badawy, Ghada</au><au>Buckers, Thijs L. J.</au><au>Leubner, Philipp</au><au>Shen, Jie</au><au>de Vries, Folkert K.</au><au>Koelling, Sebastian</au><au>Kouwenhoven, Leo P.</au><au>Verheijen, Marcel A.</au><au>Bakkers, Erik P. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom‐Up Grown 2D InSb Nanostructures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-04-05</date><risdate>2019</risdate><volume>31</volume><issue>14</issue><spage>e1808181</spage><epage>n/a</epage><pages>e1808181-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Low‐dimensional high‐quality InSb materials are promising candidates for next‐generation quantum devices due to the high carrier mobility, low effective mass, and large g‐factor of the heavy element compound InSb. Various quantum phenomena are demonstrated in InSb 2D electron gases and nanowires. A combination of the best features of these two systems (pristine nanoscale and flexible design) is desirable to realize, e.g., the multiterminal topological Josephson device. Here, controlled growth of 2D nanostructures, nanoflakes, on an InSb platform is demonstrated. An assembly of nanoflakes with various dimensions and morphologies, thinner than the Bohr radius of InSb, are fabricated. Importantly, the growth of either nanowires or nanoflakes can be enforced experimentally by setting growth and substrate design parameters properly. Hall bar measurements on the nanostructures yield mobilities up to ≈20 000 cm2 V−1 s−1 and detect quantum Hall plateaus. This allows to see the system as a viable nanoscale 2D platform for future quantum devices. Low‐dimensional high‐quality InSb materials are promising candidates for various next‐generation devices due to the high carrier mobility, low effective mass, and large g‐factor of this heavy element compound. Controlled growth of “free‐standing” 2D InSb nanoflakes is realized by setting growth and substrate design parameters. Electronic assessment of the material marks this system as a viable nanoscale 2D platform for future quantum devices, thermal rectifiers, field emitters, infrared detectors, etc.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30779385</pmid><doi>10.1002/adma.201808181</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2740-9688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1808181-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2201708386
source Wiley Online Library
subjects Carrier mobility
Design parameters
free‐standing
Heavy elements
high mobility
Indium antimonide
InSb
Intermetallic compounds
Materials science
Mathematical morphology
nanoflakes
Nanostructure
Nanowires
Quantum phenomena
Substrates
title Bottom‐Up Grown 2D InSb Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom%E2%80%90Up%20Grown%202D%20InSb%20Nanostructures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gazibegovic,%20Sasa&rft.date=2019-04-05&rft.volume=31&rft.issue=14&rft.spage=e1808181&rft.epage=n/a&rft.pages=e1808181-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201808181&rft_dat=%3Cproquest_cross%3E2201708386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201708386&rft_id=info:pmid/30779385&rfr_iscdi=true