Spatiotemporal signal propagation in complex networks

A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2019-04, Vol.15 (4), p.403-412
Hauptverfasser: Hens, Chittaranjan, Harush, Uzi, Haber, Simi, Cohen, Reuven, Barzel, Baruch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 4
container_start_page 403
container_title Nature physics
container_volume 15
creator Hens, Chittaranjan
Harush, Uzi
Haber, Simi
Cohen, Reuven
Barzel, Baruch
description A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation. Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.
doi_str_mv 10.1038/s41567-018-0409-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2201701146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201701146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZadqkR1nUFRY8qOeQdtPStdvUpIv6702p6MnTG5j3Ho-PsUuEa4RU3QSBWS45oOIgoOBwxBYoRcZJKDz-vWV6ys5C2AEIyjFdsOx5MGPrRrsfnDddEtqmjzJ4N5hm-vRJ2yeV2w-d_Ux6O344_xbO2UltumAvfnTJXu_vXlZrvnl6eFzdbniVKhq5KsmSQQCUJq-tIlljtrVFilUlCkKkUlbZ1giyhSQjSlWYsi5qylVpS8zTJbuae-Oe94MNo965g48DgyaKrYAoJhfOrsq7ELyt9eDbvfFfGkFPdPRMR0c6eqKjIWZozoTo7Rvr_5r_D30DQipnRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201701146</pqid></control><display><type>article</type><title>Spatiotemporal signal propagation in complex networks</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Hens, Chittaranjan ; Harush, Uzi ; Haber, Simi ; Cohen, Reuven ; Barzel, Baruch</creator><creatorcontrib>Hens, Chittaranjan ; Harush, Uzi ; Haber, Simi ; Cohen, Reuven ; Barzel, Baruch</creatorcontrib><description>A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation. Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0409-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/530/2801 ; 639/766/530/2804 ; Atomic ; Cellular communication ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Dynamic models ; Dynamical systems ; Information dissemination ; Mathematical and Computational Physics ; Molecular ; Nonlinear dynamics ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Propagation ; Social networks ; Theoretical ; Topology</subject><ispartof>Nature physics, 2019-04, Vol.15 (4), p.403-412</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</citedby><cites>FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</cites><orcidid>0000-0001-8862-4384 ; 0000-0001-8788-2189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0409-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0409-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hens, Chittaranjan</creatorcontrib><creatorcontrib>Harush, Uzi</creatorcontrib><creatorcontrib>Haber, Simi</creatorcontrib><creatorcontrib>Cohen, Reuven</creatorcontrib><creatorcontrib>Barzel, Baruch</creatorcontrib><title>Spatiotemporal signal propagation in complex networks</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation. Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.</description><subject>639/766/530/2801</subject><subject>639/766/530/2804</subject><subject>Atomic</subject><subject>Cellular communication</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Information dissemination</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinear dynamics</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Social networks</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZadqkR1nUFRY8qOeQdtPStdvUpIv6702p6MnTG5j3Ho-PsUuEa4RU3QSBWS45oOIgoOBwxBYoRcZJKDz-vWV6ys5C2AEIyjFdsOx5MGPrRrsfnDddEtqmjzJ4N5hm-vRJ2yeV2w-d_Ux6O344_xbO2UltumAvfnTJXu_vXlZrvnl6eFzdbniVKhq5KsmSQQCUJq-tIlljtrVFilUlCkKkUlbZ1giyhSQjSlWYsi5qylVpS8zTJbuae-Oe94MNo965g48DgyaKrYAoJhfOrsq7ELyt9eDbvfFfGkFPdPRMR0c6eqKjIWZozoTo7Rvr_5r_D30DQipnRQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Hens, Chittaranjan</creator><creator>Harush, Uzi</creator><creator>Haber, Simi</creator><creator>Cohen, Reuven</creator><creator>Barzel, Baruch</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8862-4384</orcidid><orcidid>https://orcid.org/0000-0001-8788-2189</orcidid></search><sort><creationdate>20190401</creationdate><title>Spatiotemporal signal propagation in complex networks</title><author>Hens, Chittaranjan ; Harush, Uzi ; Haber, Simi ; Cohen, Reuven ; Barzel, Baruch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/530/2801</topic><topic>639/766/530/2804</topic><topic>Atomic</topic><topic>Cellular communication</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Information dissemination</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinear dynamics</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Social networks</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hens, Chittaranjan</creatorcontrib><creatorcontrib>Harush, Uzi</creatorcontrib><creatorcontrib>Haber, Simi</creatorcontrib><creatorcontrib>Cohen, Reuven</creatorcontrib><creatorcontrib>Barzel, Baruch</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hens, Chittaranjan</au><au>Harush, Uzi</au><au>Haber, Simi</au><au>Cohen, Reuven</au><au>Barzel, Baruch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal signal propagation in complex networks</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>403</spage><epage>412</epage><pages>403-412</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation. Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0409-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8862-4384</orcidid><orcidid>https://orcid.org/0000-0001-8788-2189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2019-04, Vol.15 (4), p.403-412
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2201701146
source SpringerLink Journals; Nature Journals Online
subjects 639/766/530/2801
639/766/530/2804
Atomic
Cellular communication
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Dynamic models
Dynamical systems
Information dissemination
Mathematical and Computational Physics
Molecular
Nonlinear dynamics
Optical and Plasma Physics
Physics
Physics and Astronomy
Propagation
Social networks
Theoretical
Topology
title Spatiotemporal signal propagation in complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20signal%20propagation%20in%20complex%20networks&rft.jtitle=Nature%20physics&rft.au=Hens,%20Chittaranjan&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=403&rft.epage=412&rft.pages=403-412&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0409-0&rft_dat=%3Cproquest_cross%3E2201701146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201701146&rft_id=info:pmid/&rfr_iscdi=true