Spatiotemporal signal propagation in complex networks
A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot...
Gespeichert in:
Veröffentlicht in: | Nature physics 2019-04, Vol.15 (4), p.403-412 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 4 |
container_start_page | 403 |
container_title | Nature physics |
container_volume | 15 |
creator | Hens, Chittaranjan Harush, Uzi Haber, Simi Cohen, Reuven Barzel, Baruch |
description | A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation.
Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns. |
doi_str_mv | 10.1038/s41567-018-0409-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2201701146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201701146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZadqkR1nUFRY8qOeQdtPStdvUpIv6702p6MnTG5j3Ho-PsUuEa4RU3QSBWS45oOIgoOBwxBYoRcZJKDz-vWV6ys5C2AEIyjFdsOx5MGPrRrsfnDddEtqmjzJ4N5hm-vRJ2yeV2w-d_Ux6O344_xbO2UltumAvfnTJXu_vXlZrvnl6eFzdbniVKhq5KsmSQQCUJq-tIlljtrVFilUlCkKkUlbZ1giyhSQjSlWYsi5qylVpS8zTJbuae-Oe94MNo965g48DgyaKrYAoJhfOrsq7ELyt9eDbvfFfGkFPdPRMR0c6eqKjIWZozoTo7Rvr_5r_D30DQipnRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201701146</pqid></control><display><type>article</type><title>Spatiotemporal signal propagation in complex networks</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Hens, Chittaranjan ; Harush, Uzi ; Haber, Simi ; Cohen, Reuven ; Barzel, Baruch</creator><creatorcontrib>Hens, Chittaranjan ; Harush, Uzi ; Haber, Simi ; Cohen, Reuven ; Barzel, Baruch</creatorcontrib><description>A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation.
Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0409-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/530/2801 ; 639/766/530/2804 ; Atomic ; Cellular communication ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Dynamic models ; Dynamical systems ; Information dissemination ; Mathematical and Computational Physics ; Molecular ; Nonlinear dynamics ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Propagation ; Social networks ; Theoretical ; Topology</subject><ispartof>Nature physics, 2019-04, Vol.15 (4), p.403-412</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</citedby><cites>FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</cites><orcidid>0000-0001-8862-4384 ; 0000-0001-8788-2189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0409-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0409-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hens, Chittaranjan</creatorcontrib><creatorcontrib>Harush, Uzi</creatorcontrib><creatorcontrib>Haber, Simi</creatorcontrib><creatorcontrib>Cohen, Reuven</creatorcontrib><creatorcontrib>Barzel, Baruch</creatorcontrib><title>Spatiotemporal signal propagation in complex networks</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation.
Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.</description><subject>639/766/530/2801</subject><subject>639/766/530/2804</subject><subject>Atomic</subject><subject>Cellular communication</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Information dissemination</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinear dynamics</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Social networks</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9GZadqkR1nUFRY8qOeQdtPStdvUpIv6702p6MnTG5j3Ho-PsUuEa4RU3QSBWS45oOIgoOBwxBYoRcZJKDz-vWV6ys5C2AEIyjFdsOx5MGPrRrsfnDddEtqmjzJ4N5hm-vRJ2yeV2w-d_Ux6O344_xbO2UltumAvfnTJXu_vXlZrvnl6eFzdbniVKhq5KsmSQQCUJq-tIlljtrVFilUlCkKkUlbZ1giyhSQjSlWYsi5qylVpS8zTJbuae-Oe94MNo965g48DgyaKrYAoJhfOrsq7ELyt9eDbvfFfGkFPdPRMR0c6eqKjIWZozoTo7Rvr_5r_D30DQipnRQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Hens, Chittaranjan</creator><creator>Harush, Uzi</creator><creator>Haber, Simi</creator><creator>Cohen, Reuven</creator><creator>Barzel, Baruch</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8862-4384</orcidid><orcidid>https://orcid.org/0000-0001-8788-2189</orcidid></search><sort><creationdate>20190401</creationdate><title>Spatiotemporal signal propagation in complex networks</title><author>Hens, Chittaranjan ; Harush, Uzi ; Haber, Simi ; Cohen, Reuven ; Barzel, Baruch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8b2e2a10017a6fe827f15de931cc492112b7c5da42e972a4b89abf9f268beb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/530/2801</topic><topic>639/766/530/2804</topic><topic>Atomic</topic><topic>Cellular communication</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Information dissemination</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinear dynamics</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Social networks</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hens, Chittaranjan</creatorcontrib><creatorcontrib>Harush, Uzi</creatorcontrib><creatorcontrib>Haber, Simi</creatorcontrib><creatorcontrib>Cohen, Reuven</creatorcontrib><creatorcontrib>Barzel, Baruch</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hens, Chittaranjan</au><au>Harush, Uzi</au><au>Haber, Simi</au><au>Cohen, Reuven</au><au>Barzel, Baruch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal signal propagation in complex networks</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>403</spage><epage>412</epage><pages>403-412</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A major achievement in the study of complex networks is the realization that diverse systems, from sub-cellular biology to social networks, exhibit universal topological characteristics. Yet, such universality does not naturally translate to the dynamics of these systems, as dynamic behaviour cannot be uniquely predicted from topology alone. Rather, it depends on the interplay of the network’s topology with the dynamic mechanisms of interaction between the nodes. Hence, systems with similar structure may exhibit profoundly different dynamic behaviour. We therefore seek a general theoretical framework to help us systematically translate topological elements into their predicted dynamic outcome. Here, we offer such a translation in the context of signal propagation, linking the topology of a network to the observed spatiotemporal spread of perturbative signals across it, thus capturing the network’s role in propagating local information. For a range of nonlinear dynamic models, we predict that the propagation rules condense into three highly distinctive dynamic regimes, characterized by the interplay between network paths, degree distribution and the interaction dynamics. As a result, classifying a system’s intrinsic interaction mechanisms into the relevant dynamic regime allows us to systematically translate topology into dynamic patterns of information propagation.
Complex networks with identical topology may exhibit different dynamics. A systematic analysis of signal propagation in networks reveals the existence of three specific dynamic regimes that connect topological features to dynamic patterns.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0409-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8862-4384</orcidid><orcidid>https://orcid.org/0000-0001-8788-2189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2019-04, Vol.15 (4), p.403-412 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2201701146 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/766/530/2801 639/766/530/2804 Atomic Cellular communication Classical and Continuum Physics Complex Systems Condensed Matter Physics Dynamic models Dynamical systems Information dissemination Mathematical and Computational Physics Molecular Nonlinear dynamics Optical and Plasma Physics Physics Physics and Astronomy Propagation Social networks Theoretical Topology |
title | Spatiotemporal signal propagation in complex networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20signal%20propagation%20in%20complex%20networks&rft.jtitle=Nature%20physics&rft.au=Hens,%20Chittaranjan&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=403&rft.epage=412&rft.pages=403-412&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0409-0&rft_dat=%3Cproquest_cross%3E2201701146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201701146&rft_id=info:pmid/&rfr_iscdi=true |