Acoustic Landau quantization and quantum-Hall-like edge states
Many intriguing phenomena occur for electrons under strong magnetic fields 1 , 2 . Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field 3 – 6 , in which electrons behave as they do in a real magnetic field 7 – 11 . This enabled the control of qua...
Gespeichert in:
Veröffentlicht in: | Nature physics 2019-04, Vol.15 (4), p.352-356 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 356 |
---|---|
container_issue | 4 |
container_start_page | 352 |
container_title | Nature physics |
container_volume | 15 |
creator | Wen, Xinhua Qiu, Chunyin Qi, Yajuan Ye, Liping Ke, Manzhu Zhang, Fan Liu, Zhengyou |
description | Many intriguing phenomena occur for electrons under strong magnetic fields
1
,
2
. Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field
3
–
6
, in which electrons behave as they do in a real magnetic field
7
–
11
. This enabled the control of quantum transport by mechanical means and allowed the unreached high-field regime to be explored. Such synthetic gauge fields have been achieved in molecular
12
and photonic
13
lattices. Here we report an experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to the acoustic graphene. The controllability of our macroscopic platform enables us to observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive owing to the difficulty in creating large-area uniform pseudomagnetic fields
5
,
6
. These results, consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings may also offer opportunities to manipulate sound in conceptually novel ways.
A graphene-like two-dimensional sonic crystal, under uniaxial deformation, experiences a giant uniform pseudomagnetic field. This leads to the quantization of the cyclotron orbits—a kind of acoustic Landau level—that is observed here. |
doi_str_mv | 10.1038/s41567-019-0446-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2201694692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201694692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f843eb98319fb3cefbe00d1c2d4c06c48186764280fa66c0898da2bef275829e3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC52j-NZtchFK0FRa86Dlks5OydbvbJtmDfnpTVvTkaYbHe2-GH0K3lNxTwtVDFHQhS0yoxkQIifkZmtFSLDATip7_7iW_RFcx7ggRTFI-Q49LN4wxta6obN_YsTiOtk_tl03t0BdZmoRxjze263DXfkABzRaKmGyCeI0uvO0i3PzMOXp_fnpbbXD1un5ZLSvsOJUJeyU41Fpxqn3NHfgaCGmoY41wRLr8opKlFEwRb6V0RGnVWFaDZ-VCMQ18ju6m3kMYjiPEZHbDGPp80jBGqNRCapZddHK5MMQYwJtDaPc2fBpKzAmTmTCZjMmcMBmeM2zKxOzttxD-mv8PfQPeomnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201694692</pqid></control><display><type>article</type><title>Acoustic Landau quantization and quantum-Hall-like edge states</title><source>Nature_系列刊</source><source>Alma/SFX Local Collection</source><creator>Wen, Xinhua ; Qiu, Chunyin ; Qi, Yajuan ; Ye, Liping ; Ke, Manzhu ; Zhang, Fan ; Liu, Zhengyou</creator><creatorcontrib>Wen, Xinhua ; Qiu, Chunyin ; Qi, Yajuan ; Ye, Liping ; Ke, Manzhu ; Zhang, Fan ; Liu, Zhengyou</creatorcontrib><description>Many intriguing phenomena occur for electrons under strong magnetic fields
1
,
2
. Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field
3
–
6
, in which electrons behave as they do in a real magnetic field
7
–
11
. This enabled the control of quantum transport by mechanical means and allowed the unreached high-field regime to be explored. Such synthetic gauge fields have been achieved in molecular
12
and photonic
13
lattices. Here we report an experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to the acoustic graphene. The controllability of our macroscopic platform enables us to observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive owing to the difficulty in creating large-area uniform pseudomagnetic fields
5
,
6
. These results, consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings may also offer opportunities to manipulate sound in conceptually novel ways.
A graphene-like two-dimensional sonic crystal, under uniaxial deformation, experiences a giant uniform pseudomagnetic field. This leads to the quantization of the cyclotron orbits—a kind of acoustic Landau level—that is observed here.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0446-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2794 ; 639/766/119/2792/4128 ; Acoustics ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Controllability ; Deformation ; Electrons ; Graphene ; Lattices ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum transport ; Stability ; Theoretical</subject><ispartof>Nature physics, 2019-04, Vol.15 (4), p.352-356</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f843eb98319fb3cefbe00d1c2d4c06c48186764280fa66c0898da2bef275829e3</citedby><cites>FETCH-LOGICAL-c316t-f843eb98319fb3cefbe00d1c2d4c06c48186764280fa66c0898da2bef275829e3</cites><orcidid>0000-0003-4623-4200 ; 0000-0002-4318-3420 ; 0000-0002-7779-6129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Xinhua</creatorcontrib><creatorcontrib>Qiu, Chunyin</creatorcontrib><creatorcontrib>Qi, Yajuan</creatorcontrib><creatorcontrib>Ye, Liping</creatorcontrib><creatorcontrib>Ke, Manzhu</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Liu, Zhengyou</creatorcontrib><title>Acoustic Landau quantization and quantum-Hall-like edge states</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Many intriguing phenomena occur for electrons under strong magnetic fields
1
,
2
. Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field
3
–
6
, in which electrons behave as they do in a real magnetic field
7
–
11
. This enabled the control of quantum transport by mechanical means and allowed the unreached high-field regime to be explored. Such synthetic gauge fields have been achieved in molecular
12
and photonic
13
lattices. Here we report an experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to the acoustic graphene. The controllability of our macroscopic platform enables us to observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive owing to the difficulty in creating large-area uniform pseudomagnetic fields
5
,
6
. These results, consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings may also offer opportunities to manipulate sound in conceptually novel ways.
A graphene-like two-dimensional sonic crystal, under uniaxial deformation, experiences a giant uniform pseudomagnetic field. This leads to the quantization of the cyclotron orbits—a kind of acoustic Landau level—that is observed here.</description><subject>639/301/119/2794</subject><subject>639/766/119/2792/4128</subject><subject>Acoustics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Controllability</subject><subject>Deformation</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Lattices</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum transport</subject><subject>Stability</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuC52j-NZtchFK0FRa86Dlks5OydbvbJtmDfnpTVvTkaYbHe2-GH0K3lNxTwtVDFHQhS0yoxkQIifkZmtFSLDATip7_7iW_RFcx7ggRTFI-Q49LN4wxta6obN_YsTiOtk_tl03t0BdZmoRxjze263DXfkABzRaKmGyCeI0uvO0i3PzMOXp_fnpbbXD1un5ZLSvsOJUJeyU41Fpxqn3NHfgaCGmoY41wRLr8opKlFEwRb6V0RGnVWFaDZ-VCMQ18ju6m3kMYjiPEZHbDGPp80jBGqNRCapZddHK5MMQYwJtDaPc2fBpKzAmTmTCZjMmcMBmeM2zKxOzttxD-mv8PfQPeomnQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wen, Xinhua</creator><creator>Qiu, Chunyin</creator><creator>Qi, Yajuan</creator><creator>Ye, Liping</creator><creator>Ke, Manzhu</creator><creator>Zhang, Fan</creator><creator>Liu, Zhengyou</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4623-4200</orcidid><orcidid>https://orcid.org/0000-0002-4318-3420</orcidid><orcidid>https://orcid.org/0000-0002-7779-6129</orcidid></search><sort><creationdate>20190401</creationdate><title>Acoustic Landau quantization and quantum-Hall-like edge states</title><author>Wen, Xinhua ; Qiu, Chunyin ; Qi, Yajuan ; Ye, Liping ; Ke, Manzhu ; Zhang, Fan ; Liu, Zhengyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f843eb98319fb3cefbe00d1c2d4c06c48186764280fa66c0898da2bef275829e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/2794</topic><topic>639/766/119/2792/4128</topic><topic>Acoustics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Controllability</topic><topic>Deformation</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Lattices</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum transport</topic><topic>Stability</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Xinhua</creatorcontrib><creatorcontrib>Qiu, Chunyin</creatorcontrib><creatorcontrib>Qi, Yajuan</creatorcontrib><creatorcontrib>Ye, Liping</creatorcontrib><creatorcontrib>Ke, Manzhu</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Liu, Zhengyou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Xinhua</au><au>Qiu, Chunyin</au><au>Qi, Yajuan</au><au>Ye, Liping</au><au>Ke, Manzhu</au><au>Zhang, Fan</au><au>Liu, Zhengyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Landau quantization and quantum-Hall-like edge states</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>352</spage><epage>356</epage><pages>352-356</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Many intriguing phenomena occur for electrons under strong magnetic fields
1
,
2
. Recently, it was shown that an appropriate strain texture in graphene could induce a synthetic gauge field
3
–
6
, in which electrons behave as they do in a real magnetic field
7
–
11
. This enabled the control of quantum transport by mechanical means and allowed the unreached high-field regime to be explored. Such synthetic gauge fields have been achieved in molecular
12
and photonic
13
lattices. Here we report an experimental realization of a giant uniform pseudomagnetic field in acoustics by introducing a simple uniaxial deformation to the acoustic graphene. The controllability of our macroscopic platform enables us to observe the acoustic Landau levels in frequency-resolved spectroscopy and their spatial localization in pressure-field distributions. We further visualize the quantum-Hall-like edge states (connected to the zeroth Landau level), which have been elusive owing to the difficulty in creating large-area uniform pseudomagnetic fields
5
,
6
. These results, consistent with our full-wave simulations, establish a complete framework for artificial structures under constant pseudomagnetic fields. Our findings may also offer opportunities to manipulate sound in conceptually novel ways.
A graphene-like two-dimensional sonic crystal, under uniaxial deformation, experiences a giant uniform pseudomagnetic field. This leads to the quantization of the cyclotron orbits—a kind of acoustic Landau level—that is observed here.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0446-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4623-4200</orcidid><orcidid>https://orcid.org/0000-0002-4318-3420</orcidid><orcidid>https://orcid.org/0000-0002-7779-6129</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2019-04, Vol.15 (4), p.352-356 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2201694692 |
source | Nature_系列刊; Alma/SFX Local Collection |
subjects | 639/301/119/2794 639/766/119/2792/4128 Acoustics Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Controllability Deformation Electrons Graphene Lattices Letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Quantum transport Stability Theoretical |
title | Acoustic Landau quantization and quantum-Hall-like edge states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Landau%20quantization%20and%20quantum-Hall-like%20edge%20states&rft.jtitle=Nature%20physics&rft.au=Wen,%20Xinhua&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=352&rft.epage=356&rft.pages=352-356&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0446-3&rft_dat=%3Cproquest_cross%3E2201694692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201694692&rft_id=info:pmid/&rfr_iscdi=true |