Modeling seasonal onset of coastal ice

To support regional management planning decisions, and to protect human health and safety, we developed a new statistical model that simulates the onset of seasonal ice cover along the shoreline of a US National Park (the Apostle Islands National Lakeshore, or APIS). Our model encodes relationships...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climatic change 2019-05, Vol.154 (1-2), p.125-141
Hauptverfasser: Ji, Xialong, Gronewold, Andrew D., Daher, Houraa, Rood, Richard B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1-2
container_start_page 125
container_title Climatic change
container_volume 154
creator Ji, Xialong
Gronewold, Andrew D.
Daher, Houraa
Rood, Richard B.
description To support regional management planning decisions, and to protect human health and safety, we developed a new statistical model that simulates the onset of seasonal ice cover along the shoreline of a US National Park (the Apostle Islands National Lakeshore, or APIS). Our model encodes relationships between different modes of climate variability and regional ice cover from 1972 to 2015, and successfully simulates both the timing of ice onset and the probability that ice cover might form at all in a particular winter season. We simulate both of these endpoints using a novel combination of statistical hazard (or survival) and beta regression models. Our analysis of coastal ice cover along the APIS reinforces findings from previous research suggesting that the late 1990s signified a regime shift in climate conditions across North America. Before this period, coastal ice cover conditions at the APIS were often suitable for pedestrian access, while after this period coastal ice cover at the APIS has been highly variable. Our new model accommodates this regime shift, and provides a stepping stone towards a broad range of applications of similar models for supporting regional management decisions in light of evolving climate conditions.
doi_str_mv 10.1007/s10584-019-02400-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2201460187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201460187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-db891ff812c7b1cb4a384a561d39b379f81e76901c8029d8d27d6d059b783f243</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC4C06k6RNcpTFf7DiRc8hTdKly9qsSffgtzdrBW-eZph57_H4EXKJcIMA8jYjNEpQQE2BCQCKR6TCRnKKQsExqQDbhgKAPiVnOW8Om2RtRa5fog_bYVzXOdgcR7ut45jDVMe-dtHmqRwGF87JSW-3OVz8zgV5f7h_Wz7R1evj8_JuRR1HPVHfKY19r5A52aHrhOVK2KZFz3XHpS6fIFsN6BQw7ZVn0rceGt1JxXsm-IJczbm7FD_3IU9mE_eptMqGMUDRAipZVGxWuRRzTqE3uzR82PRlEMyBh5l5mMLD_PAwWEx8NuUiHtch_UX_4_oGg6hgVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201460187</pqid></control><display><type>article</type><title>Modeling seasonal onset of coastal ice</title><source>PAIS Index</source><source>SpringerLink Journals</source><creator>Ji, Xialong ; Gronewold, Andrew D. ; Daher, Houraa ; Rood, Richard B.</creator><creatorcontrib>Ji, Xialong ; Gronewold, Andrew D. ; Daher, Houraa ; Rood, Richard B.</creatorcontrib><description>To support regional management planning decisions, and to protect human health and safety, we developed a new statistical model that simulates the onset of seasonal ice cover along the shoreline of a US National Park (the Apostle Islands National Lakeshore, or APIS). Our model encodes relationships between different modes of climate variability and regional ice cover from 1972 to 2015, and successfully simulates both the timing of ice onset and the probability that ice cover might form at all in a particular winter season. We simulate both of these endpoints using a novel combination of statistical hazard (or survival) and beta regression models. Our analysis of coastal ice cover along the APIS reinforces findings from previous research suggesting that the late 1990s signified a regime shift in climate conditions across North America. Before this period, coastal ice cover conditions at the APIS were often suitable for pedestrian access, while after this period coastal ice cover at the APIS has been highly variable. Our new model accommodates this regime shift, and provides a stepping stone towards a broad range of applications of similar models for supporting regional management decisions in light of evolving climate conditions.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-019-02400-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Sciences ; Climate ; Climate change ; Climate Change/Climate Change Impacts ; Climate models ; Climate variability ; Climatic conditions ; Coastal zone management ; Computer simulation ; Decisions ; Earth and Environmental Science ; Earth Sciences ; Ice ; Ice cover ; Ice formation ; Lake shores ; Management decisions ; Management planning ; Mathematical models ; Modelling ; National parks ; Pedestrians ; Probability theory ; Regional planning ; Regions ; Regression analysis ; Regression models ; Safety ; Seasons ; Shorelines ; Statistical analysis ; Statistical models ; Survival ; Winter</subject><ispartof>Climatic change, 2019-05, Vol.154 (1-2), p.125-141</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Climatic Change is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-db891ff812c7b1cb4a384a561d39b379f81e76901c8029d8d27d6d059b783f243</citedby><cites>FETCH-LOGICAL-c319t-db891ff812c7b1cb4a384a561d39b379f81e76901c8029d8d27d6d059b783f243</cites><orcidid>0000-0002-3576-2529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10584-019-02400-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10584-019-02400-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27843,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ji, Xialong</creatorcontrib><creatorcontrib>Gronewold, Andrew D.</creatorcontrib><creatorcontrib>Daher, Houraa</creatorcontrib><creatorcontrib>Rood, Richard B.</creatorcontrib><title>Modeling seasonal onset of coastal ice</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><description>To support regional management planning decisions, and to protect human health and safety, we developed a new statistical model that simulates the onset of seasonal ice cover along the shoreline of a US National Park (the Apostle Islands National Lakeshore, or APIS). Our model encodes relationships between different modes of climate variability and regional ice cover from 1972 to 2015, and successfully simulates both the timing of ice onset and the probability that ice cover might form at all in a particular winter season. We simulate both of these endpoints using a novel combination of statistical hazard (or survival) and beta regression models. Our analysis of coastal ice cover along the APIS reinforces findings from previous research suggesting that the late 1990s signified a regime shift in climate conditions across North America. Before this period, coastal ice cover conditions at the APIS were often suitable for pedestrian access, while after this period coastal ice cover at the APIS has been highly variable. Our new model accommodates this regime shift, and provides a stepping stone towards a broad range of applications of similar models for supporting regional management decisions in light of evolving climate conditions.</description><subject>Atmospheric Sciences</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Climatic conditions</subject><subject>Coastal zone management</subject><subject>Computer simulation</subject><subject>Decisions</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice formation</subject><subject>Lake shores</subject><subject>Management decisions</subject><subject>Management planning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>National parks</subject><subject>Pedestrians</subject><subject>Probability theory</subject><subject>Regional planning</subject><subject>Regions</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Safety</subject><subject>Seasons</subject><subject>Shorelines</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Survival</subject><subject>Winter</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LxDAQxYMoWFe_gKeC4C06k6RNcpTFf7DiRc8hTdKly9qsSffgtzdrBW-eZph57_H4EXKJcIMA8jYjNEpQQE2BCQCKR6TCRnKKQsExqQDbhgKAPiVnOW8Om2RtRa5fog_bYVzXOdgcR7ut45jDVMe-dtHmqRwGF87JSW-3OVz8zgV5f7h_Wz7R1evj8_JuRR1HPVHfKY19r5A52aHrhOVK2KZFz3XHpS6fIFsN6BQw7ZVn0rceGt1JxXsm-IJczbm7FD_3IU9mE_eptMqGMUDRAipZVGxWuRRzTqE3uzR82PRlEMyBh5l5mMLD_PAwWEx8NuUiHtch_UX_4_oGg6hgVw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Ji, Xialong</creator><creator>Gronewold, Andrew D.</creator><creator>Daher, Houraa</creator><creator>Rood, Richard B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7TQ</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3576-2529</orcidid></search><sort><creationdate>20190501</creationdate><title>Modeling seasonal onset of coastal ice</title><author>Ji, Xialong ; Gronewold, Andrew D. ; Daher, Houraa ; Rood, Richard B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-db891ff812c7b1cb4a384a561d39b379f81e76901c8029d8d27d6d059b783f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric Sciences</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Climatic conditions</topic><topic>Coastal zone management</topic><topic>Computer simulation</topic><topic>Decisions</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice formation</topic><topic>Lake shores</topic><topic>Management decisions</topic><topic>Management planning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>National parks</topic><topic>Pedestrians</topic><topic>Probability theory</topic><topic>Regional planning</topic><topic>Regions</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Safety</topic><topic>Seasons</topic><topic>Shorelines</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Survival</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Xialong</creatorcontrib><creatorcontrib>Gronewold, Andrew D.</creatorcontrib><creatorcontrib>Daher, Houraa</creatorcontrib><creatorcontrib>Rood, Richard B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>PAIS Index</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Xialong</au><au>Gronewold, Andrew D.</au><au>Daher, Houraa</au><au>Rood, Richard B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling seasonal onset of coastal ice</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>154</volume><issue>1-2</issue><spage>125</spage><epage>141</epage><pages>125-141</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><abstract>To support regional management planning decisions, and to protect human health and safety, we developed a new statistical model that simulates the onset of seasonal ice cover along the shoreline of a US National Park (the Apostle Islands National Lakeshore, or APIS). Our model encodes relationships between different modes of climate variability and regional ice cover from 1972 to 2015, and successfully simulates both the timing of ice onset and the probability that ice cover might form at all in a particular winter season. We simulate both of these endpoints using a novel combination of statistical hazard (or survival) and beta regression models. Our analysis of coastal ice cover along the APIS reinforces findings from previous research suggesting that the late 1990s signified a regime shift in climate conditions across North America. Before this period, coastal ice cover conditions at the APIS were often suitable for pedestrian access, while after this period coastal ice cover at the APIS has been highly variable. Our new model accommodates this regime shift, and provides a stepping stone towards a broad range of applications of similar models for supporting regional management decisions in light of evolving climate conditions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10584-019-02400-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3576-2529</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-0009
ispartof Climatic change, 2019-05, Vol.154 (1-2), p.125-141
issn 0165-0009
1573-1480
language eng
recordid cdi_proquest_journals_2201460187
source PAIS Index; SpringerLink Journals
subjects Atmospheric Sciences
Climate
Climate change
Climate Change/Climate Change Impacts
Climate models
Climate variability
Climatic conditions
Coastal zone management
Computer simulation
Decisions
Earth and Environmental Science
Earth Sciences
Ice
Ice cover
Ice formation
Lake shores
Management decisions
Management planning
Mathematical models
Modelling
National parks
Pedestrians
Probability theory
Regional planning
Regions
Regression analysis
Regression models
Safety
Seasons
Shorelines
Statistical analysis
Statistical models
Survival
Winter
title Modeling seasonal onset of coastal ice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20seasonal%20onset%20of%20coastal%20ice&rft.jtitle=Climatic%20change&rft.au=Ji,%20Xialong&rft.date=2019-05-01&rft.volume=154&rft.issue=1-2&rft.spage=125&rft.epage=141&rft.pages=125-141&rft.issn=0165-0009&rft.eissn=1573-1480&rft_id=info:doi/10.1007/s10584-019-02400-1&rft_dat=%3Cproquest_cross%3E2201460187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201460187&rft_id=info:pmid/&rfr_iscdi=true