Joint-Sparse-Blocks and Low-Rank Representation for Hyperspectral Unmixing

Hyperspectral unmixing has attracted much attention in recent years. Single sparse unmixing assumes that a pixel in a hyperspectral image consists of a relatively small number of spectral signatures from large, ever-growing, and available spectral libraries. Joint-sparsity (or row-sparsity) model ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-04, Vol.57 (4), p.2419-2438
Hauptverfasser: Huang, Jie, Huang, Ting-Zhu, Deng, Liang-Jian, Zhao, Xi-Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral unmixing has attracted much attention in recent years. Single sparse unmixing assumes that a pixel in a hyperspectral image consists of a relatively small number of spectral signatures from large, ever-growing, and available spectral libraries. Joint-sparsity (or row-sparsity) model typically enforces all pixels in a neighborhood to share the same set of spectral signatures. The two sparse models are widely used in the literature. In this paper, we propose a joint-sparsity-blocks model for abundance estimation problem. Namely, the abundance matrix of size m\times n is partitioned to have one row block and s column blocks and each column block itself is joint-sparse. It generalizes both the single (i.e., s=n ) and the joint (i.e., s=1 ) sparsities. Moreover, concatenating the proposed joint-sparsity-blocks structure and low rankness assumption on the abundance coefficients, we develop a new algorithm called joint-sparse-blocks and low-rank unmixing . In particular, for the joint-sparse-blocks regression problem, we develop a two-level reweighting strategy to enhance the sparsity along the rows within each block. Simulated and real-data experiments demonstrate the effectiveness of the proposed algorithm.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2018.2873326