A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification

Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-04, Vol.57 (4), p.2407-2418
Hauptverfasser: Chen, Yanqiao, Jiao, Licheng, Li, Yangyang, Li, Lingling, Zhang, Dan, Ren, Bo, Marturi, Naresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2418
container_issue 4
container_start_page 2407
container_title IEEE transactions on geoscience and remote sensing
container_volume 57
creator Chen, Yanqiao
Jiao, Licheng
Li, Yangyang
Li, Lingling
Zhang, Dan
Ren, Bo
Marturi, Naresh
description Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.
doi_str_mv 10.1109/TGRS.2018.2873302
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2200821040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8509609</ieee_id><sourcerecordid>2200821040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-Ht93WtY8EFUlQCeCrS9fdaclYsR0k_nu3QHw6L-c7N_cj5JbBiDFQD-vpcjXiwOSIyyyOgZ-RAUtTGYFIknMyAKZExKXil-QqhA0AS1KWDcjnmL65A9Z0hVtr3H5XY0kX3m3QtPaA9NF26Rrtf-lCW0_nqH1jmy_6iu23K2nlPF24ejVe0tlWfyGd1DoEW1mje-6aXFS6DnhzyiH5eH5aT16i-ft0NhnPI8NV3EYFqsQU2qgMdIqVFpUSTMoyLY2BDBmLKykKxUQlUkAjteFFxplOyy6EiuMhuT_u7rz72WNo843b-6Y7mXMOIDmDBLoWO7aMdyF4rPKdt9vut5xB3mvMe415rzE_aeyYuyNjEfG_L1NQAlT8B-8ubpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200821040</pqid></control><display><type>article</type><title>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</title><source>IEEE Xplore</source><creator>Chen, Yanqiao ; Jiao, Licheng ; Li, Yangyang ; Li, Lingling ; Zhang, Dan ; Ren, Bo ; Marturi, Naresh</creator><creatorcontrib>Chen, Yanqiao ; Jiao, Licheng ; Li, Yangyang ; Li, Lingling ; Zhang, Dan ; Ren, Bo ; Marturi, Naresh</creatorcontrib><description>Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2873302</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Dictionaries ; Entropy ; Feature extraction ; Image classification ; Image processing ; Learning ; Machine learning ; Matrix decomposition ; Methods ; Model accuracy ; Polarimetric synthetic aperture radar (PolSAR) ; projective dictionary pair learning (DPL) ; Radar imaging ; Radar polarimetry ; Remote sensing ; SAR (radar) ; Scattering ; semicoupled dictionary learning (SCDL) ; semicoupled projective DPL (SDPL) ; Spaceborne radar ; stacked auto-encoder (SAE) ; Synthetic aperture radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-04, Vol.57 (4), p.2407-2418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</citedby><cites>FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</cites><orcidid>0000-0002-0481-5069 ; 0000-0002-6130-2518 ; 0000-0001-6228-852X ; 0000-0002-0159-167X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8509609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8509609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yanqiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Ren, Bo</creatorcontrib><creatorcontrib>Marturi, Naresh</creatorcontrib><title>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.</description><subject>Classification</subject><subject>Dictionaries</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Matrix decomposition</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Polarimetric synthetic aperture radar (PolSAR)</subject><subject>projective dictionary pair learning (DPL)</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Scattering</subject><subject>semicoupled dictionary learning (SCDL)</subject><subject>semicoupled projective DPL (SDPL)</subject><subject>Spaceborne radar</subject><subject>stacked auto-encoder (SAE)</subject><subject>Synthetic aperture radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-Ht93WtY8EFUlQCeCrS9fdaclYsR0k_nu3QHw6L-c7N_cj5JbBiDFQD-vpcjXiwOSIyyyOgZ-RAUtTGYFIknMyAKZExKXil-QqhA0AS1KWDcjnmL65A9Z0hVtr3H5XY0kX3m3QtPaA9NF26Rrtf-lCW0_nqH1jmy_6iu23K2nlPF24ejVe0tlWfyGd1DoEW1mje-6aXFS6DnhzyiH5eH5aT16i-ft0NhnPI8NV3EYFqsQU2qgMdIqVFpUSTMoyLY2BDBmLKykKxUQlUkAjteFFxplOyy6EiuMhuT_u7rz72WNo843b-6Y7mXMOIDmDBLoWO7aMdyF4rPKdt9vut5xB3mvMe415rzE_aeyYuyNjEfG_L1NQAlT8B-8ubpo</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Chen, Yanqiao</creator><creator>Jiao, Licheng</creator><creator>Li, Yangyang</creator><creator>Li, Lingling</creator><creator>Zhang, Dan</creator><creator>Ren, Bo</creator><creator>Marturi, Naresh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0481-5069</orcidid><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0001-6228-852X</orcidid><orcidid>https://orcid.org/0000-0002-0159-167X</orcidid></search><sort><creationdate>20190401</creationdate><title>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</title><author>Chen, Yanqiao ; Jiao, Licheng ; Li, Yangyang ; Li, Lingling ; Zhang, Dan ; Ren, Bo ; Marturi, Naresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Dictionaries</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Matrix decomposition</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Polarimetric synthetic aperture radar (PolSAR)</topic><topic>projective dictionary pair learning (DPL)</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Scattering</topic><topic>semicoupled dictionary learning (SCDL)</topic><topic>semicoupled projective DPL (SDPL)</topic><topic>Spaceborne radar</topic><topic>stacked auto-encoder (SAE)</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yanqiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Ren, Bo</creatorcontrib><creatorcontrib>Marturi, Naresh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yanqiao</au><au>Jiao, Licheng</au><au>Li, Yangyang</au><au>Li, Lingling</au><au>Zhang, Dan</au><au>Ren, Bo</au><au>Marturi, Naresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>57</volume><issue>4</issue><spage>2407</spage><epage>2418</epage><pages>2407-2418</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2873302</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0481-5069</orcidid><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0001-6228-852X</orcidid><orcidid>https://orcid.org/0000-0002-0159-167X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2019-04, Vol.57 (4), p.2407-2418
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2200821040
source IEEE Xplore
subjects Classification
Dictionaries
Entropy
Feature extraction
Image classification
Image processing
Learning
Machine learning
Matrix decomposition
Methods
Model accuracy
Polarimetric synthetic aperture radar (PolSAR)
projective dictionary pair learning (DPL)
Radar imaging
Radar polarimetry
Remote sensing
SAR (radar)
Scattering
semicoupled dictionary learning (SCDL)
semicoupled projective DPL (SDPL)
Spaceborne radar
stacked auto-encoder (SAE)
Synthetic aperture radar
title A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Semicoupled%20Projective%20Dictionary%20Pair%20Learning%20Method%20for%20PolSAR%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yanqiao&rft.date=2019-04-01&rft.volume=57&rft.issue=4&rft.spage=2407&rft.epage=2418&rft.pages=2407-2418&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2873302&rft_dat=%3Cproquest_RIE%3E2200821040%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200821040&rft_id=info:pmid/&rft_ieee_id=8509609&rfr_iscdi=true