A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification
Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair lear...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2019-04, Vol.57 (4), p.2407-2418 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2418 |
---|---|
container_issue | 4 |
container_start_page | 2407 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 57 |
creator | Chen, Yanqiao Jiao, Licheng Li, Yangyang Li, Lingling Zhang, Dan Ren, Bo Marturi, Naresh |
description | Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification. |
doi_str_mv | 10.1109/TGRS.2018.2873302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2200821040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8509609</ieee_id><sourcerecordid>2200821040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-Ht93WtY8EFUlQCeCrS9fdaclYsR0k_nu3QHw6L-c7N_cj5JbBiDFQD-vpcjXiwOSIyyyOgZ-RAUtTGYFIknMyAKZExKXil-QqhA0AS1KWDcjnmL65A9Z0hVtr3H5XY0kX3m3QtPaA9NF26Rrtf-lCW0_nqH1jmy_6iu23K2nlPF24ejVe0tlWfyGd1DoEW1mje-6aXFS6DnhzyiH5eH5aT16i-ft0NhnPI8NV3EYFqsQU2qgMdIqVFpUSTMoyLY2BDBmLKykKxUQlUkAjteFFxplOyy6EiuMhuT_u7rz72WNo843b-6Y7mXMOIDmDBLoWO7aMdyF4rPKdt9vut5xB3mvMe415rzE_aeyYuyNjEfG_L1NQAlT8B-8ubpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200821040</pqid></control><display><type>article</type><title>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</title><source>IEEE Xplore</source><creator>Chen, Yanqiao ; Jiao, Licheng ; Li, Yangyang ; Li, Lingling ; Zhang, Dan ; Ren, Bo ; Marturi, Naresh</creator><creatorcontrib>Chen, Yanqiao ; Jiao, Licheng ; Li, Yangyang ; Li, Lingling ; Zhang, Dan ; Ren, Bo ; Marturi, Naresh</creatorcontrib><description>Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2873302</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Dictionaries ; Entropy ; Feature extraction ; Image classification ; Image processing ; Learning ; Machine learning ; Matrix decomposition ; Methods ; Model accuracy ; Polarimetric synthetic aperture radar (PolSAR) ; projective dictionary pair learning (DPL) ; Radar imaging ; Radar polarimetry ; Remote sensing ; SAR (radar) ; Scattering ; semicoupled dictionary learning (SCDL) ; semicoupled projective DPL (SDPL) ; Spaceborne radar ; stacked auto-encoder (SAE) ; Synthetic aperture radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-04, Vol.57 (4), p.2407-2418</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</citedby><cites>FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</cites><orcidid>0000-0002-0481-5069 ; 0000-0002-6130-2518 ; 0000-0001-6228-852X ; 0000-0002-0159-167X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8509609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8509609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yanqiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Ren, Bo</creatorcontrib><creatorcontrib>Marturi, Naresh</creatorcontrib><title>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.</description><subject>Classification</subject><subject>Dictionaries</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Matrix decomposition</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Polarimetric synthetic aperture radar (PolSAR)</subject><subject>projective dictionary pair learning (DPL)</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Scattering</subject><subject>semicoupled dictionary learning (SCDL)</subject><subject>semicoupled projective DPL (SDPL)</subject><subject>Spaceborne radar</subject><subject>stacked auto-encoder (SAE)</subject><subject>Synthetic aperture radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-Ht93WtY8EFUlQCeCrS9fdaclYsR0k_nu3QHw6L-c7N_cj5JbBiDFQD-vpcjXiwOSIyyyOgZ-RAUtTGYFIknMyAKZExKXil-QqhA0AS1KWDcjnmL65A9Z0hVtr3H5XY0kX3m3QtPaA9NF26Rrtf-lCW0_nqH1jmy_6iu23K2nlPF24ejVe0tlWfyGd1DoEW1mje-6aXFS6DnhzyiH5eH5aT16i-ft0NhnPI8NV3EYFqsQU2qgMdIqVFpUSTMoyLY2BDBmLKykKxUQlUkAjteFFxplOyy6EiuMhuT_u7rz72WNo843b-6Y7mXMOIDmDBLoWO7aMdyF4rPKdt9vut5xB3mvMe415rzE_aeyYuyNjEfG_L1NQAlT8B-8ubpo</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Chen, Yanqiao</creator><creator>Jiao, Licheng</creator><creator>Li, Yangyang</creator><creator>Li, Lingling</creator><creator>Zhang, Dan</creator><creator>Ren, Bo</creator><creator>Marturi, Naresh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0481-5069</orcidid><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0001-6228-852X</orcidid><orcidid>https://orcid.org/0000-0002-0159-167X</orcidid></search><sort><creationdate>20190401</creationdate><title>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</title><author>Chen, Yanqiao ; Jiao, Licheng ; Li, Yangyang ; Li, Lingling ; Zhang, Dan ; Ren, Bo ; Marturi, Naresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-be94cbac970a5efa6f96188d5dcc07e113f86b916f650ec8ac2b721a5db726933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Dictionaries</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Matrix decomposition</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Polarimetric synthetic aperture radar (PolSAR)</topic><topic>projective dictionary pair learning (DPL)</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Scattering</topic><topic>semicoupled dictionary learning (SCDL)</topic><topic>semicoupled projective DPL (SDPL)</topic><topic>Spaceborne radar</topic><topic>stacked auto-encoder (SAE)</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yanqiao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><creatorcontrib>Li, Yangyang</creatorcontrib><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Ren, Bo</creatorcontrib><creatorcontrib>Marturi, Naresh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yanqiao</au><au>Jiao, Licheng</au><au>Li, Yangyang</au><au>Li, Lingling</au><au>Zhang, Dan</au><au>Ren, Bo</au><au>Marturi, Naresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>57</volume><issue>4</issue><spage>2407</spage><epage>2418</epage><pages>2407-2418</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in remote sensing image processing. In recent years, stacked auto-encoder (SAE) has obtained a series of excellent results in PolSAR image classification. The recently proposed projective dictionary pair learning (DPL) model takes both accuracy and time consumption into consideration, and another recently proposed semicoupled dictionary learning (SCDL) model gives a new way to fit different features. Based on the SAE, DPL, and SCDL models, we propose a novel semicoupled projective DPL method with SAE (SAE-SDPL) for PolSAR image classification. Our method can get the classification result efficiently and correctly and meanwhile giving a new method to fit different features. In this paper, three PolSAR images are used to test the performance of SAE-SDPL. Compared with some state-of-the-art methods, our method obtains excellent results in PolSAR image classification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2873302</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0481-5069</orcidid><orcidid>https://orcid.org/0000-0002-6130-2518</orcidid><orcidid>https://orcid.org/0000-0001-6228-852X</orcidid><orcidid>https://orcid.org/0000-0002-0159-167X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2019-04, Vol.57 (4), p.2407-2418 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2200821040 |
source | IEEE Xplore |
subjects | Classification Dictionaries Entropy Feature extraction Image classification Image processing Learning Machine learning Matrix decomposition Methods Model accuracy Polarimetric synthetic aperture radar (PolSAR) projective dictionary pair learning (DPL) Radar imaging Radar polarimetry Remote sensing SAR (radar) Scattering semicoupled dictionary learning (SCDL) semicoupled projective DPL (SDPL) Spaceborne radar stacked auto-encoder (SAE) Synthetic aperture radar |
title | A Novel Semicoupled Projective Dictionary Pair Learning Method for PolSAR Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Semicoupled%20Projective%20Dictionary%20Pair%20Learning%20Method%20for%20PolSAR%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yanqiao&rft.date=2019-04-01&rft.volume=57&rft.issue=4&rft.spage=2407&rft.epage=2418&rft.pages=2407-2418&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2873302&rft_dat=%3Cproquest_RIE%3E2200821040%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200821040&rft_id=info:pmid/&rft_ieee_id=8509609&rfr_iscdi=true |